Data Mining in Cancer Research [Application Notes]

This article is not intended as a comprehensive survey of data mining applications in cancer. Rather, it provides starting points for further, more targeted, literature searches, by embarking on a guided tour of computational intelligence applications in cancer medicine, structured in increasing order of the physical scales of biological processes.

[1]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[2]  Michele Pinelli,et al.  Interactive data analysis and clustering of genomic data , 2008, Neural Networks.

[3]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[4]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  W El-Deredy,et al.  Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection , 2003, Statistics in medicine.

[6]  Aristides Gionis,et al.  Clustering aggregation , 2005, 21st International Conference on Data Engineering (ICDE'05).

[7]  Paulo J. G. Lisboa,et al.  Partial Logistic Artificial Neural Network for Competing Risks Regularized With Automatic Relevance Determination , 2009, IEEE Transactions on Neural Networks.

[8]  S Van Huffel,et al.  Fast nosologic imaging of the brain. , 2007, Journal of magnetic resonance.

[9]  Paulo J. G. Lisboa,et al.  How to find simple and accurate rules for viral protease cleavage specificities , 2009, BMC Bioinformatics.

[10]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[11]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[12]  Paulo J. G. Lisboa,et al.  Cluster-based visualisation with scatter matrices , 2008, Pattern Recognit. Lett..

[13]  Q. Wang,et al.  Clustering methods for microarray gene expression data. , 2006, Omics : a journal of integrative biology.

[14]  Isabelle Guyon,et al.  A Stability Based Method for Discovering Structure in Clustered Data , 2001, Pacific Symposium on Biocomputing.

[15]  R. Demicheli,et al.  Double-Peaked Time Distribution of Mortality for Breast Cancer Patients Undergoing Mastectomy , 2002, Breast Cancer Research and Treatment.

[16]  Ron Shamir,et al.  A Probabilistic Methodology for Integrating Knowledge and Experiments on Biological Networks , 2006, J. Comput. Biol..

[17]  Rich Caruana,et al.  Meta Clustering , 2006, Sixth International Conference on Data Mining (ICDM'06).

[18]  Andrew J. Bulpitt,et al.  A Primer on Learning in Bayesian Networks for Computational Biology , 2007, PLoS Comput. Biol..

[19]  M K Kerr,et al.  Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Ludmila I. Kuncheva,et al.  Evaluation of Stability of k-Means Cluster Ensembles with Respect to Random Initialization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Soonmee Cha,et al.  Neuroimaging in neuro-oncology , 2009, Neurotherapeutics.

[22]  Roberto Tagliaferri,et al.  A novel neural network-based survival analysis model , 2003, Neural Networks.

[23]  E Biganzoli,et al.  Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. , 1998, Statistics in medicine.

[24]  Sylvie Grand,et al.  A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images , 2000, Nature Medicine.

[25]  Fionn Murtagh,et al.  Hierarchical Clustering of Massive, High Dimensional Data Sets by Exploiting Ultrametric Embedding , 2008, SIAM J. Sci. Comput..

[26]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[27]  Paulo J. G. Lisboa,et al.  The Use of Artificial Neural Networks in Decision Support in Cancer: a Systematic Review , 2005 .

[28]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[29]  Karl Herholz,et al.  Imaging in neurooncology , 2005, NeuroRX.

[30]  Paulo J. G. Lisboa,et al.  Double-blind evaluation and benchmarking of survival models in a multi-centre study , 2007, Comput. Biol. Medicine.

[31]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[32]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[33]  Rich Caruana,et al.  Consensus Clusterings , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[34]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[35]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[36]  Paul Sajda,et al.  Machine learning for detection and diagnosis of disease. , 2006, Annual review of biomedical engineering.

[37]  J. Woolgar The Predictive Value of Detailed Histological Staging of Surgical Resection Specimens in Oral Cancer , 2007 .

[38]  Sam Yuan Sung,et al.  Consensus clustering , 2005, Intell. Data Anal..

[39]  M. Girolami,et al.  Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques , 2006, Journal of The Royal Society Interface.