Disorder enhancement due to structural relaxation in amorphous Ge2Sb2Te5

This work investigates the atomic structural relaxation accounting for the resistance drift of the amorphous phase of the Ge2Sb2Te5 (α-GST) chalcogenide alloy. A joint electrical and optical characterization over time on both the phase change memory cell in the reset state and the as-deposited amorphous GST film has been performed to elucidate the origin of the drift phenomenon. We highlight that the drift mechanism is ascribed to the removal of residual resonant-like bonding in the amorphous network, lowering the electronic component of the dielectric constant (ɛ∞) and leading to a progressive loosing of any medium-range order.

[1]  P. Fantini,et al.  Band gap widening with time induced by structural relaxation in amorphous Ge2Sb2Te5 films , 2012 .

[2]  S. Braga,et al.  Dependence of resistance drift on the amorphous cap size in phase change memory arrays , 2009 .

[3]  S. Adachi,et al.  Optical dispersion relations in amorphous semiconductors InSb and GeSe2 , 1997 .

[4]  Luca Larcher,et al.  Analytical model for low-frequency noise in amorphous chalcogenide-based phase-change memory devices , 2009 .

[5]  Improved stability of a phase change memory device using Ge-doped SbTe at varying ambient temperature , 2010 .

[6]  Daniele Ielmini,et al.  Physical origin of the resistance drift exponent in amorphous phase change materials , 2011 .

[7]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[8]  I. Karpov,et al.  Fundamental drift of parameters in chalcogenide phase change memory , 2007 .

[9]  R. O. Jones,et al.  Polymorphism in phase-change materials: melt-quenched and as-deposited amorphous structures in Ge 2 Sb 2 Te 5 from density functional calculations , 2011 .

[10]  P. Littlewood The crystal structure of IV-VI compounds. I. Classification and description , 1980 .

[11]  Yeonwoong Jung,et al.  Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices , 2010 .

[12]  Doo Seok Jeong,et al.  Reasons for obtaining an optical dielectric constant from the Poole–Frenkel conduction behavior of atomic-layer-deposited HfO2 films , 2005 .

[13]  M Bernasconi,et al.  First principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[15]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part I: Experimental Study , 2009, IEEE Transactions on Electron Devices.

[16]  First principles study of the optical contrast in phase change materials. , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[18]  D. Ielmini,et al.  Role of mechanical stress in the resistance drift of Ge2Sb2Te5 films and phase change memories , 2011 .

[19]  G. Lucovsky,et al.  Effects of Resonance Bonding on the Properties of Crystalline and Amorphous Semiconductors , 1973 .

[20]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[21]  Andrea L. Lacaita,et al.  Phase‐change memories , 2008 .

[22]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[23]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.