Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators

Based on the theory of Dunkl operators, this paper presents a general concept of multivariable Hermite polynomials and Hermite functions which are associated with finite reflection groups on R . The definition and properties of these generalized Hermite systems extend naturally those of their classical counterparts; partial derivatives and the usual exponential kernel are here replaced by Dunkl operators and the generalized exponential kernel K of the Dunkl transform. In the case of the symmetric group SN , our setting includes the polynomial eigenfunctions of certain Calogero-Sutherland type operators. The second part of this paper is devoted to the heat equation associated with Dunkl’s Laplacian. As in the classical case, the corresponding Cauchy problem is governed by a positive one-parameter semigroup; this is assured by a maximum principle for the generalized Laplacian. The explicit solution to the Cauchy problem involves again the kernelK, which is, on the way, proven to be nonnegative for real arguments.

[1]  A lecture on the Calogero-Sutherland models , 1994, hep-th/9405104.

[2]  M. Lassalle,et al.  Polynômes de Hermite généralisés , 1991 .

[3]  Michael Voit,et al.  AN UNCERTAINTY PRINCIPLE FOR HANKEL TRANSFORMS , 1999 .

[4]  Common algebraic structure for the Calogero - Sutherland models , 1996, solv-int/9608009.

[5]  Confluent Hypergeometric Orthogonal Polynomials Related to the Rational Quantum Calogero System with Harmonic Confinement , 1996, q-alg/9609032.

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  E. Opdam Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group , 1993 .

[8]  M. Lassalle,et al.  Polynômes de Laguerre généralisés , 1991 .

[9]  Charles F. Dunkl,et al.  Hankel transforms associated to finite reflection groups , 1992 .

[10]  Yu. A. Molchanov,et al.  Fundamental solutions for partial differential equations with reflection group invariance , 1995 .

[11]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[12]  M. Rosenblum,et al.  Generalized Hermite Polynomials and the Bose-Like Oscillator Calculus , 1993, math/9307224.

[13]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[14]  C. Dunkl,et al.  Singular polynomials for finite reflection groups , 1994 .

[15]  T. H. Baker,et al.  Nonsymmetric Jack polynomials and integral kernels , 1996 .

[16]  C. Dunkl Reflection groups and orthogonal polynomials on the sphere , 1988 .

[17]  Luc Lapointe,et al.  Exact operator solution of the Calogero-Sutherland model , 1995, q-alg/9509003.

[18]  The Calogero-Sutherland model and polynomials with prescribed symmetry , 1996, solv-int/9609010.

[19]  Charles F. Dunkl,et al.  Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.

[20]  M.F.E. de Jeu,et al.  The dunkl transform , 1993 .

[21]  G. Heckman A Remark on the Dunkl Differential—Difference Operators , 1991 .

[22]  P. Forrester,et al.  The Calogero-Sutherland Model and Generalized Classical Polynomials , 1996, solv-int/9608004.

[23]  Siddhartha Sahi,et al.  A recursion and a combinatorial formula for Jack polynomials , 1996 .

[24]  E. Opdam Harmonic analysis for certain representations of graded Hecke algebras , 1995 .