Concept Models for Domain-Specific Search

We describe our participation in the 2008 CLEF Domain-specific track. We evaluate blind relevance feedback models and concept models on the CLEF domain-specific test collection. Applying relevance modeling techniques is found to have a positive effect on the 2008 topic set, in terms of mean average precision and [email protected] Applying concept models for blind relevance feedback, results in even bigger improvements over a query-likelihood baseline, in terms of mean average precision and early precision.

[1]  Maarten de Rijke,et al.  Thesaurus-Based Feedback to Support Mixed Search and Browsing Environments , 2007, ECDL.

[2]  Dolf Trieschnigg,et al.  Parsimonious concept modeling , 2008, SIGIR '08.

[3]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[4]  Dolf Trieschnigg,et al.  Measuring concept relatedness using language models , 2008, SIGIR '08.

[5]  M. de Rijke,et al.  A few examples go a long way: constructing query models from elaborate query formulations , 2008, SIGIR '08.

[6]  ChengXiang Zhai,et al.  Risk minimization and language modeling in text retrieval dissertation abstract , 2002, SIGF.

[7]  Stuart Macdonald,et al.  User Engagement in Research Data Curation , 2009, ECDL.

[8]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[9]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[10]  M. de Rijke,et al.  Parsimonious relevance models , 2008, SIGIR '08.

[11]  Peter G. Anick Using terminological feedback for web search refinement: a log-based study , 2003, SIGIR.

[12]  Chris Buckley,et al.  Improving automatic query expansion , 1998, SIGIR '98.

[13]  Djoerd Hiemstra,et al.  A Linguistically Motivated Probabilistic Model of Information Retrieval , 1998, ECDL.

[14]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[15]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[16]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.

[17]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .