(Magneto)caloric refrigeration: is there light at the end of the tunnel?

Caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by very small perturbations of the driving field(s). This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.

[1]  Sheng-Guo Lu,et al.  Electrocaloric Materials for Solid‐State Refrigeration , 2009 .

[2]  Seong-Cho Yu,et al.  Review of the Magnetocaloric Effect in Manganite Materials , 2007 .

[3]  Shi-Chune Yao,et al.  A chip scale electrocaloric effect based cooling device , 2013 .

[4]  Ichiro Takeuchi,et al.  Solid-state cooling with caloric materials , 2015 .

[5]  P. Algarabel,et al.  Magnetic-field-induced structural phase transition in Gd 5 ( S i 1.8 Ge 2.2 ) , 1998 .

[6]  V. K. Pecharsky,et al.  Magnetocaloric Effect Associated with Magnetostructural Transitions , 2005 .

[7]  S. Nikitin,et al.  Cooling Scheme Based on the AF–F Transition in Fe–Rh Alloys Induced by Tensile Stress , 2002 .

[8]  A. Tishin Magnetocaloric effect in strong magnetic fields , 1990 .

[9]  W. Giauque A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .

[10]  Matjaz Valant,et al.  Electrocaloric materials for future solid-state refrigeration technologies , 2012 .

[11]  Marko Ožbolt,et al.  Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives , 2014 .

[12]  Vitalij K. Pecharsky,et al.  Advanced magnetocaloric materials: What does the future hold? , 2006 .

[13]  J. Quarini,et al.  Solid state refrigeration: Cooling and refrigeration using crystalline phase changes in metal alloys , 2004 .

[14]  K. Gschneidner,et al.  Thermodynamics of the magnetocaloric effect , 2001 .

[15]  K. Gschneidner,et al.  Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.

[16]  J. A. Barclay,et al.  The theory of an active magnetic regenerative refrigerator , 1983 .

[17]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[18]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[19]  M. Farle,et al.  Hysteresis effects in the inverse magnetocaloric effect in martensitic Ni-Mn-In and Ni-Mn-Sn , 2012 .

[20]  W. Giauque,et al.  Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .

[21]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[22]  E. Bruck,et al.  From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds , 2011, 1203.0555.

[23]  W. A. Steyert Stirling‐cycle rotating magnetic refrigerators and heat engines for use near room temperature , 1978 .

[24]  Thomas A. Lograsso,et al.  Metamagnetism Seeded by Nanostructural Features of Single‐Crystalline Gd5Si2Ge2 , 2009 .

[25]  L. Mañosa,et al.  A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions , 2003 .

[26]  P. Ranke,et al.  Theoretical aspects of the magnetocaloric effect , 2010 .

[27]  Qiming Zhang,et al.  An electrocaloric refrigerator without external regenerator , 2014 .

[28]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[29]  R. Pirc,et al.  Electrocaloric effect in relaxor ferroelectrics , 2010, 1010.2914.

[30]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[31]  John A. Shaw,et al.  Tips and tricks for characterizing shape memory alloy wire: Part 1—differential scanning calorimetry and basic phenomena , 2008 .

[32]  A. Poredos,et al.  Magnetocaloric Energy Conversion , 2015 .

[33]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[34]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[35]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[36]  Qiming Zhang,et al.  Upper bounds on the electrocaloric effect in polar solids , 2011 .

[37]  J. Sun,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[38]  Yanbing Jia,et al.  A solid-state refrigerator based on the electrocaloric effect , 2012 .

[39]  K. Gschneidner,et al.  On the nature of the magnetocaloric effect of the first-order magnetostructural transition , 2012 .

[40]  O. Gutfleisch,et al.  Large reversible magnetocaloric effect in Ni-Mn-In-Co , 2015 .

[41]  V. Franco,et al.  The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models , 2012 .

[42]  Andrej Kitanovski,et al.  Magnetocaloric Energy Conversion: From Theory to Applications , 2015 .

[43]  Craig Eldershaw,et al.  A heat-switch-based electrocaloric cooler , 2015 .

[44]  A. Tishin,et al.  Recent progress in magnetocaloric effect: Mechanisms and potential applications , 2012 .

[45]  E. Brück,et al.  Developments in magnetocaloric refrigeration , 2005 .

[46]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[47]  W. Ao,et al.  Giant magnetocaloric effect enhanced by Pb-doping in Gd5Si2Ge2 compound , 2006 .

[48]  T. Goto,et al.  Itinerant-electron metamagnetic transition and large magnetovolume effects in La(Fe x Si 1-x ) 13 compounds , 2001 .

[49]  Qiming Zhang,et al.  Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition , 2011 .

[50]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[51]  R. Radebaugh,et al.  Electrocaloric refrigeration at cryogenic temperatures , 1980 .

[52]  Ray Radebaugh,et al.  Feasibility of electrocaloric refrigeration for the 4-15 K temperature range , 1979 .

[53]  Vitalij K. Pecharsky,et al.  Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .

[54]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[55]  A. Rowe,et al.  Active magnetic regenerator performance enhancement using passive magnetic materials , 2007 .

[56]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[57]  K. Gschneidner,et al.  Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) , 1997 .

[58]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .

[59]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[60]  F. D. Boer,et al.  Transition‐Metal‐Based Magnetic Refrigerants for Room‐Temperature Applications. , 2002 .

[61]  K. Gschneidner,et al.  Magnetic and magnetocaloric properties and the magnetic phase diagram of single-crystal dysprosium , 2005 .

[62]  V. Brodyansky,et al.  Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body , 1992 .

[63]  David Jiles,et al.  Permanent magnet array for the magnetic refrigerator , 2002 .

[64]  A. S. Andreenko,et al.  Magnetocaloric effects in rare-earth magnetic materials , 1989 .