Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions.

[1]  Ruey-Jen Yang Microfluidics and Nanofluidics , 2019, Inventions.

[2]  Majid Ebrahimi Warkiani,et al.  Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. , 2016, Lab on a chip.

[3]  An Hendrix,et al.  Identification of Individual Exosome-Like Vesicles by Surface Enhanced Raman Spectroscopy. , 2016, Small.

[4]  Tushar Patel,et al.  Development of an aptasensor for electrochemical detection of exosomes. , 2016, Methods.

[5]  V. Govorun,et al.  Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol , 2015, Scientific Reports.

[6]  Chunsun Zhang,et al.  Chemiluminescence detection for microfluidic cloth-based analytical devices (μCADs). , 2015, Biosensors & bioelectronics.

[7]  Sahil D. Shah,et al.  Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. , 2015, Methods.

[8]  Chang-Soo Lee,et al.  A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. , 2015, Lab on a chip.

[9]  M. Fusaro,et al.  Differential Effects of Dabigatran and Warfarin on Bone Volume and Structure in Rats with Normal Renal Function , 2015, PloS one.

[10]  L. Larue,et al.  Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines , 2015, Pigment cell & melanoma research.

[11]  B. Olde,et al.  Non-contact acoustic capture of microparticles from small plasma volumes. , 2015, Lab on a chip.

[12]  Bob S. Carter,et al.  Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma , 2015, Nature Communications.

[13]  M. Konrad,et al.  Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays. , 2015, Biomicrofluidics.

[14]  Claudia Mongini,et al.  Emerging Roles of Exosomes in Normal and Pathological Conditions: New Insights for Diagnosis and Therapeutic Applications , 2015, Front. Immunol..

[15]  Hakho Lee,et al.  Acoustic purification of extracellular microvesicles. , 2015, ACS nano.

[16]  Matt Trau,et al.  Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing , 2015, Scientific Reports.

[17]  Cecilia Lässer Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle , 2015, Expert opinion on biological therapy.

[18]  L. O’Driscoll,et al.  Biological properties of extracellular vesicles and their physiological functions , 2015, Journal of extracellular vesicles.

[19]  Jan Svoboda,et al.  Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer , 2015, Journal of extracellular vesicles.

[20]  K. R. Jakobsen,et al.  Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma , 2015, Journal of extracellular vesicles.

[21]  M. Oksvold,et al.  Magnetic bead-based isolation of exosomes. , 2015, Methods in molecular biology.

[22]  R. Lechler,et al.  Regulatory T Cell-Derived Exosomes: Possible Therapeutic and Diagnostic Tools in Transplantation , 2014, Front. Immunol..

[23]  R. Cerione,et al.  Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations , 2014, Biomedical microdevices.

[24]  H. D. del Portillo,et al.  The Role of Extracellular Vesicles in Modulating the Host Immune Response during Parasitic Infections , 2014, Front. Immunol..

[25]  F. Borràs,et al.  Tolerance in Organ Transplantation: From Conventional Immunosuppression to Extracellular Vesicles , 2014, Front. Immunol..

[26]  Tao Dong,et al.  Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications , 2014, Sensors.

[27]  Aaron R. Hawkins,et al.  Correlated Electrical and Optical Analysis of Single Nanoparticles and Biomolecules on a Nanopore-Gated Optofluidic Chip , 2014, Nano letters.

[28]  Allan Stensballe,et al.  Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. , 2014, Clinical therapeutics.

[29]  P. de Vos,et al.  Monocytes and Macrophages in Pregnancy and Pre-Eclampsia , 2014, Front. Immunol..

[30]  T. Ichiki,et al.  Evaluation of desialylation effect on zeta potential of extracellular vesicles secreted from human prostate cancer cells by on-chip microcapillary electrophoresis , 2014 .

[31]  Hakho Lee,et al.  Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor , 2014, Nature Biotechnology.

[32]  H. Bayley,et al.  Single-molecule site-specific detection of protein phosphorylation with a nanopore , 2014, Nature Biotechnology.

[33]  A. Godwin,et al.  Lab on a Chip Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology †‡ , 2014 .

[34]  Takagi Tatsuya,et al.  Mo/ソーダ石灰ガラス基板上に成長させたCu(In,Ga)Se2薄膜の表面劣化機構の光ルミネセンス特性化 , 2014 .

[35]  K. Braeckmans,et al.  Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[36]  Michael Liem,et al.  Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma , 2013, Proteomics.

[37]  Hang Lu,et al.  Advances in microfluidic cell separation and manipulation. , 2013, Current opinion in chemical engineering.

[38]  Winston Patrick Kuo,et al.  Current methods for the isolation of extracellular vesicles , 2013, Biological chemistry.

[39]  Minseok S. Kim,et al.  Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration. , 2013, The Analyst.

[40]  N. Rothman,et al.  Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR , 2013, Nucleic Acids Research.

[41]  Rohan T Ranasinghe,et al.  Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays. , 2013, ACS nano.

[42]  Biana Godin,et al.  Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. , 2013, Lab on a chip.

[43]  Robert Puers,et al.  Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. , 2013, Lab on a chip.

[44]  Gregory Timp,et al.  Direct visualization of single-molecule translocations through synthetic nanopores comparable in size to a molecule. , 2013, ACS nano.

[45]  Imre Mäger,et al.  Extracellular vesicles: biology and emerging therapeutic opportunities , 2013, Nature Reviews Drug Discovery.

[46]  Jiseok Lim,et al.  Micro-optical lens array for fluorescence detection in droplet-based microfluidics† †Electronic supplementary information (ESI) available: Supplementary Figures (S1 and S2). Supplementary movie 01: movie recorded by a high-speed camera without backlight illumination. Supplementary movie 02: movie re , 2013, Lab on a chip.

[47]  Graça Raposo,et al.  Extracellular vesicles: Exosomes, microvesicles, and friends , 2013, The Journal of cell biology.

[48]  R. S. Martin,et al.  Microchip-based electrochemical detection for monitoring cellular systems , 2013, Analytical and Bioanalytical Chemistry.

[49]  Patrick C. N. Rensen,et al.  Cryo-electron microscopy of extracellular vesicles in fresh plasma , 2013, Journal of extracellular vesicles.

[50]  Lynne T. Bemis,et al.  Standardization of sample collection, isolation and analysis methods in extracellular vesicle research , 2013, Journal of extracellular vesicles.

[51]  A. Tuantranont Applications of Nanomaterials in Sensors and Diagnostics , 2013 .

[52]  Saurabh Srivastava,et al.  Mediator-free microfluidics biosensor based on titania–zirconia nanocomposite for urea detection , 2013 .

[53]  S. Mathivanan,et al.  Two Distinct Populations of Exosomes Are Released from LIM1863 Colon Carcinoma Cell-derived Organoids* , 2012, Molecular & Cellular Proteomics.

[54]  Jaesung Park,et al.  Microfluidic filtration system to isolate extracellular vesicles from blood. , 2012, Lab on a chip.

[55]  Mahdieh Khosroheidari,et al.  Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. , 2012, Kidney international.

[56]  Hakho Lee,et al.  Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy , 2012, Nature Medicine.

[57]  Kuo-Liang Liu,et al.  Quantitative characterization of nanoparticles in blood by transmission electron microscopy with a window-type microchip nanopipet. , 2012, Analytical chemistry.

[58]  N. Ishiguro,et al.  Comparison of methods for isolating exosomes from bovine milk. , 2012, The Journal of veterinary medical science.

[59]  D. Weitz,et al.  Droplet microfluidics for high-throughput biological assays. , 2012, Lab on a chip.

[60]  Samuel K Sia,et al.  Commercialization of microfluidic point-of-care diagnostic devices. , 2012, Lab on a chip.

[61]  Winston Patrick Kuo,et al.  Impact of Biofluid Viscosity on Size and Sedimentation Efficiency of the Isolated Microvesicles , 2012, Front. Physio..

[62]  J. de Sonneville,et al.  Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics , 2012, Biomedical microdevices.

[63]  A. Urbani,et al.  A hyphenated microLC‐Q‐TOF‐MS platform for exosomal lipidomics investigations: Application to RCC urinary exosomes , 2012, Electrophoresis.

[64]  Richard J Simpson,et al.  Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. , 2012, Methods.

[65]  Shashi K Murthy,et al.  Clinically relevant microfluidic magnetophoretic isolation of rare-cell populations for diagnostic and therapeutic monitoring applications. , 2012, Analytical chemistry.

[66]  Ger J.A. Arkesteijn,et al.  Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles , 2011, Nanomedicine: Nanotechnology, Biology and Medicine.

[67]  M. Bahrami,et al.  Optothermal sample preconcentration and manipulation with temperature gradient focusing , 2012 .

[68]  J. Gimzewski,et al.  Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[69]  Paul J. Harrison,et al.  Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[70]  Paul A Dayton,et al.  High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy. , 2011, Lab on a chip.

[71]  Jamileh Noshari,et al.  Dynamic physical properties of dissociated tumor cells revealed by dielectrophoretic field-flow fractionation. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[72]  G. Camussi,et al.  Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. , 2011, Cancer research.

[73]  György Nagy,et al.  Cellular and Molecular Life Sciences REVIEW Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles , 2022 .

[74]  Jingsong Huang,et al.  Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip. , 2011, Lab on a chip.

[75]  Peter H Seeberger,et al.  Cantilever array sensors detect specific carbohydrate-protein interactions with picomolar sensitivity. , 2011, ACS nano.

[76]  Chun-Che Lin,et al.  Sample preconcentration in microfluidic devices , 2011 .

[77]  J. Shuga,et al.  Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions. , 2011, Angewandte Chemie.

[78]  R. Nieuwland,et al.  Cell-Derived Microparticles in the Pathogenesis of Cardiovascular Disease: Friend or Foe? , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[79]  R. Bertina,et al.  Pre-analytical and analytical issues in the analysis of blood microparticles , 2010, Thrombosis and Haemostasis.

[80]  N. Ali Detection of Inorganic and Metal Nanoparticles using qNano – IZON Science’s Nanoparticle Analysis System , 2011 .

[81]  W. Zacharias,et al.  Exosome isolation for proteomic analyses and RNA profiling. , 2011, Methods in molecular biology.

[82]  M. Trau,et al.  Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. , 2010, Small.

[83]  R. Silverstein,et al.  A novel broadband impedance method for detection of cell-derived microparticles. , 2010, Biosensors & bioelectronics.

[84]  Amy E Herr,et al.  Automated microfluidic protein immunoblotting , 2010, Nature Protocols.

[85]  N. de Jonge,et al.  Microfluidic System for Transmission Electron Microscopy , 2010, Microscopy and Microanalysis.

[86]  Fumihito Arai,et al.  Size-Dependent Filtration and Trapping of Microparticles in a Microfluidic Chip Using Graduated Gaps and Centrifugal Force , 2010, J. Robotics Mechatronics.

[87]  Andreas Manz,et al.  Latest developments in microfluidic cell biology and analysis systems. , 2010, Analytical chemistry.

[88]  Hansen Bow,et al.  Microfluidics for cell separation , 2010, Medical & Biological Engineering & Computing.

[89]  Kevin Loutherback,et al.  Improved performance of deterministic lateral displacement arrays with triangular posts , 2010 .

[90]  R. Zengerle,et al.  Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. , 2010, Chemical Society reviews.

[91]  T. Wurdinger,et al.  Microfluidic isolation and transcriptome analysis of serum microvesicles. , 2010, Lab on a chip.

[92]  T H Oosterkamp,et al.  Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles , 2010, Journal of thrombosis and haemostasis : JTH.

[93]  A. Meller,et al.  Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. , 2010, The Review of scientific instruments.

[94]  J. Klein,et al.  Microfiltration isolation of human urinary exosomes for characterization by MS , 2010, Proteomics. Clinical applications.

[95]  D. Neuberg,et al.  Tumor-Derived Tissue FactorBearing Microparticles Are Associated With Venous Thromboembolic Events in Malignancy , 2009, Clinical Cancer Research.

[96]  M. Barcinski,et al.  Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. , 2009, Cancer letters.

[97]  Michael G. Roper,et al.  Recent advances in microfluidic detection systems. , 2009, Bioanalysis.

[98]  N. Perrimon,et al.  Droplet microfluidic technology for single-cell high-throughput screening , 2009, Proceedings of the National Academy of Sciences.

[99]  C. Théry,et al.  Membrane vesicles as conveyors of immune responses , 2009, Nature Reviews Immunology.

[100]  David Elashoff,et al.  Electrochemical Sensor for Multiplex Biomarkers Detection , 2009, Clinical Cancer Research.

[101]  Massimo Spada,et al.  High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients , 2009, PloS one.

[102]  Changhuei Yang,et al.  The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts , 2009, Biomedical microdevices.

[103]  Liesbet Lagae,et al.  Localized surface plasmon resonance biosensor integrated with microfluidic chip , 2009, Biomedical microdevices.

[104]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[105]  David Erickson,et al.  Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis , 2009 .

[106]  Luke P. Lee,et al.  Innovations in optical microfluidic technologies for point-of-care diagnostics. , 2008, Lab on a chip.

[107]  A. deMello,et al.  Pillar-induced droplet merging in microfluidic circuits. , 2008, Lab on a chip.

[108]  C. Gilbert,et al.  Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. , 2008, Journal of immunological methods.

[109]  S. Hell,et al.  Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell , 2008, Proceedings of the National Academy of Sciences.

[110]  K. Otsuka,et al.  Recent progress of online sample preconcentration techniques in microchip electrophoresis. , 2008, Journal of separation science.

[111]  Donhee Ham,et al.  Chip–NMR biosensor for detection and molecular analysis of cells , 2008, Nature Medicine.

[112]  R. Ismagilov,et al.  Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. , 2008, Lab on a chip.

[113]  Christoph A. Merten,et al.  Drop-based microfluidic devices for encapsulation of single cells. , 2008, Lab on a chip.

[114]  Reinhard Niessner,et al.  Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. , 2008, Analytical chemistry.

[115]  Sung‐Min Ahn,et al.  Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. , 2008, Journal of proteome research.

[116]  Takanori Ichiki,et al.  Cell electrophoresis on a chip: what can we know from the changes in electrophoretic mobility? , 2008, Analytical and bioanalytical chemistry.

[117]  Zhiwei Zou,et al.  A Polymer Microfluidic Chip With Interdigitated Electrodes Arrays for Simultaneous Dielectrophoretic Manipulation and Impedimetric Detection of Microparticles , 2008, IEEE Sensors Journal.

[118]  Christoph A. Merten,et al.  Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. , 2008, Chemistry & biology.

[119]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[120]  Richard N. Zare,et al.  Microfluidic device for immunoassays based on surface plasmon resonance imaging. , 2008, Lab on a chip.

[121]  H. Craighead,et al.  Micro- and nanomechanical sensors for environmental, chemical, and biological detection. , 2007, Lab on a chip.

[122]  Toru Torii,et al.  Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape‐Controlled Polymer Microparticles , 2007 .

[123]  Trairak Pisitkun,et al.  Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. , 2007, American journal of physiology. Renal physiology.

[124]  G. B. Petersen,et al.  Dynamically resizable nanometre-scale apertures for molecular sensing , 2007 .

[125]  M. Record,et al.  Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. , 2007, Biochimie.

[126]  David A. Weitz,et al.  Mixing characterization inside microdroplets engineered on a microcoalescer , 2007 .

[127]  Frédéric Reymond,et al.  Disposable microfluidic ELISA for the rapid determination of folic acid content in food products , 2006, Analytical and bioanalytical chemistry.

[128]  L. Azevedo,et al.  Circulating microparticles as therapeutic targets in cardiovascular diseases. , 2007, Recent patents on cardiovascular drug discovery.

[129]  David A. Weitz,et al.  Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels , 2006 .

[130]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[131]  Simon Song,et al.  On-chip sample preconcentration for integrated microfluidic analysis , 2006, Analytical and bioanalytical chemistry.

[132]  Masafumi Nakamura,et al.  Purification, characterization and biological significance of tumor-derived exosomes. , 2005, Anticancer research.

[133]  A. Woolley,et al.  Electric field gradient focusing. , 2005, Journal of separation science.

[134]  Jicun Ren,et al.  On‐line chemiluminescence detection for isoelectric focusing of heme proteins on microchips , 2005, Electrophoresis.

[135]  Jung-Ah Cho,et al.  Exosomes: A new delivery system for tumor antigens in cancer immunotherapy , 2005, International journal of cancer.

[136]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[137]  Ana Maria Barral and Matthias G. von Herrath Exosomes: Specific Intercellular Nano-Shuttles? , 2005 .

[138]  Robert H. Austin,et al.  Continuous microfluidic immunomagnetic cell separation , 2004 .

[139]  K. Mogensen,et al.  Recent developments in detection for microfluidic systems , 2004, Electrophoresis.

[140]  M. Hristov,et al.  Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. , 2004, Blood.

[141]  Rong-Fong Shen,et al.  Identification and proteomic profiling of exosomes in human urine. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Sébastien Roy,et al.  Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. , 2004, The Biochemical journal.

[143]  J. Sturm,et al.  Micro- and nanofluidics for DNA analysis , 2004, Analytical and bioanalytical chemistry.

[144]  C. Holding Lab on a chip , 2004, Genome Biology.

[145]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[146]  Rustem F Ismagilov,et al.  Integrated microfluidic systems. , 2003, Angewandte Chemie.

[147]  J Greve,et al.  Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. , 2003, Biophysical journal.

[148]  Richard M Crooks,et al.  Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter. , 2003, Analytical chemistry.

[149]  Helen Song,et al.  A microfluidic system for controlling reaction networks in time. , 2003, Angewandte Chemie.

[150]  J. Le Pecq,et al.  Production and characterization of clinical grade exosomes derived from dendritic cells. , 2002, Journal of immunological methods.

[151]  R. Austin,et al.  Design of a microfabricated magnetic cell separator , 2001, Electrophoresis.

[152]  M. Mason,et al.  Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. , 2001, Journal of immunological methods.

[153]  M. Schwarz,et al.  Recent developments in detection methods for microfabricated analytical devices. , 2001, Lab on a chip.

[154]  K. Shakesheff,et al.  Atomic Force Microscopic Analysis of Highly Defined Protein Patterns Formed by Microfluidic Networks , 1999 .

[155]  I. Wang,et al.  Platelet-derived microparticles on synthetic surfaces observed by atomic force microscopy and fluorescence microscopy. , 1999, Biomaterials.

[156]  Xiao-Fang Yu,et al.  Highly Purified Human Immunodeficiency Virus Type 1 Reveals a Virtual Absence of Vif in Virions , 1999, Journal of Virology.

[157]  B. Imperiali,et al.  A molecular basis for glycosylation-induced conformational switching. , 1998, Chemistry & biology.

[158]  H. Monbouquette,et al.  Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. , 1998, Biophysical journal.

[159]  C. Melief,et al.  B lymphocytes secrete antigen-presenting vesicles , 1996, The Journal of experimental medicine.

[160]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[161]  J. Greve,et al.  Studying single living cells and chromosomes by confocal Raman microspectroscopy , 1990, Nature.

[162]  A. Glatfelter,et al.  Lipid microvesicles and their association with procoagulant activity in urine and glomeruli of rabbits with nephrotoxic nephritis. , 1987, Laboratory investigation; a journal of technical methods and pathology.

[163]  A. Dalton Microvesicles and vesicles of multivesicular bodies versus "virus-like" particles. , 1975, Journal of the National Cancer Institute.

[164]  T. S. West Analytical Chemistry , 1969, Nature.

[165]  Sensors and Actuators: B. Chemical , 2022 .