Adapted explicit two-step peer methods

Abstract In this paper, we present a general class of exponentially fitted two-step peer methods for the numerical integration of ordinary differential equations. The numerical scheme is constructed in order to exploit a-priori known information about the qualitative behaviour of the solution by adapting peer methods already known in literature. Examples of methods with 2 and 3 stages are provided. The effectiveness of this problem-oriented approach is shown through some numerical tests on well-known problems.

[1]  G. Vanden Berghe,et al.  Exponentially fitted quadrature rules of Gauss type for oscillatory integrands , 2005 .

[2]  Helmut Podhaisky,et al.  Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration , 2005 .

[3]  Rüdiger Weiner,et al.  Parallel Two-Step W-Methods with Peer Variables , 2004, SIAM J. Numer. Anal..

[4]  Ronald Cools,et al.  Extended quadrature rules for oscillatory integrands , 2003 .

[5]  Theodore E. Simos,et al.  A Dissipative Exponentially-Fitted Method for the Numerical Solution of the Schrödinger Equation , 2001, J. Chem. Inf. Comput. Sci..

[6]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[7]  Beatrice Paternoster,et al.  Exponentially fitted singly diagonally implicit Runge-Kutta methods , 2014, J. Comput. Appl. Math..

[8]  Beatrice Paternoster,et al.  Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts , 2017, Comput. Math. Appl..

[9]  Ronald Cools,et al.  Quadrature Rules Using First Derivatives for Oscillatory Integrands , 2001 .

[10]  Liviu Gr. Ixaru Runge-Kutta method with equation dependent coefficients , 2012, Comput. Phys. Commun..

[11]  Rüdiger Weiner,et al.  Parameter optimization for explicit parallel peer two-step methods , 2009 .

[12]  Beatrice Paternoster,et al.  Modified Gauss–Laguerre Exponential Fitting Based Formulae , 2016, J. Sci. Comput..

[13]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[14]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[15]  Helmut Podhaisky,et al.  Explicit two-step peer methods , 2008, Comput. Math. Appl..

[16]  R. D'Ambrosio,et al.  Parameter estimation in exponentially fitted hybrid methods for second order differential problems , 2011, Journal of Mathematical Chemistry.

[17]  Manuel Calvo,et al.  On the derivation of explicit two-step peer methods , 2011 .

[18]  L.Gr. Ixaru,et al.  Operations on oscillatory functions , 1997 .

[19]  Beatrice Paternoster,et al.  Exponential fitting Direct Quadrature methods for Volterra integral equations , 2010, Numerical Algorithms.

[21]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[22]  Beatrice Paternoster,et al.  On the Employ of Time Series in the Numerical Treatment of Differential Equations Modeling Oscillatory Phenomena , 2016, WIVACE.

[23]  Beatrice Paternoster,et al.  Revised exponentially fitted Runge-Kutta-Nyström methods , 2014, Appl. Math. Lett..

[24]  Beatrice Paternoster,et al.  Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval , 2014, J. Comput. Appl. Math..

[25]  Beatrice Paternoster,et al.  Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection , 2012, Appl. Math. Comput..

[26]  Beatrice Paternoster,et al.  Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution , 2015, Math. Comput. Simul..

[27]  Manuel Calvo,et al.  Functionally Fitted Explicit Two Step Peer Methods , 2015, J. Sci. Comput..

[28]  Rüdiger Weiner,et al.  Doubly quasi-consistent parallel explicit peer methods with built-in global error estimation , 2010, J. Comput. Appl. Math..

[29]  Manuel Calvo,et al.  Explicit Runge-Kutta methods for initial value problems with oscillating solutions , 1996 .

[30]  R. D'Ambrosio,et al.  Numerical solution of reaction-diffusion systems of λ - ω type by trigonometrically fitted methods , 2016 .

[31]  Kazufumi Ozawa,et al.  A functional fitting Runge-Kutta method with variable coefficients , 2001 .

[32]  Rüdiger Weiner,et al.  Parallel start for explicit parallel two-step peer methods , 2009, Numerical Algorithms.

[33]  Rüdiger Weiner,et al.  Implicit parallel peer methods for stiff initial value problems , 2005 .

[34]  Beatrice Paternoster,et al.  Some new uses of the etam(Z) functions , 2010, Comput. Phys. Commun..

[35]  Raffaele D’Ambrosio,et al.  Numerical solution of a diffusion problem by exponentially fitted finite difference methods , 2014, SpringerPlus.

[36]  H. De Meyer,et al.  Deferred correction with mono-implicit Runge-Kutta methods for first-order IVPs , 1999 .

[37]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.