Adapted explicit two-step peer methods
暂无分享,去创建一个
[1] G. Vanden Berghe,et al. Exponentially fitted quadrature rules of Gauss type for oscillatory integrands , 2005 .
[2] Helmut Podhaisky,et al. Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration , 2005 .
[3] Rüdiger Weiner,et al. Parallel Two-Step W-Methods with Peer Variables , 2004, SIAM J. Numer. Anal..
[4] Ronald Cools,et al. Extended quadrature rules for oscillatory integrands , 2003 .
[5] Theodore E. Simos,et al. A Dissipative Exponentially-Fitted Method for the Numerical Solution of the Schrödinger Equation , 2001, J. Chem. Inf. Comput. Sci..
[6] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[7] Beatrice Paternoster,et al. Exponentially fitted singly diagonally implicit Runge-Kutta methods , 2014, J. Comput. Appl. Math..
[8] Beatrice Paternoster,et al. Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts , 2017, Comput. Math. Appl..
[9] Ronald Cools,et al. Quadrature Rules Using First Derivatives for Oscillatory Integrands , 2001 .
[10] Liviu Gr. Ixaru. Runge-Kutta method with equation dependent coefficients , 2012, Comput. Phys. Commun..
[11] Rüdiger Weiner,et al. Parameter optimization for explicit parallel peer two-step methods , 2009 .
[12] Beatrice Paternoster,et al. Modified Gauss–Laguerre Exponential Fitting Based Formulae , 2016, J. Sci. Comput..
[13] Beatrice Paternoster,et al. Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .
[14] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .
[15] Helmut Podhaisky,et al. Explicit two-step peer methods , 2008, Comput. Math. Appl..
[16] R. D'Ambrosio,et al. Parameter estimation in exponentially fitted hybrid methods for second order differential problems , 2011, Journal of Mathematical Chemistry.
[17] Manuel Calvo,et al. On the derivation of explicit two-step peer methods , 2011 .
[18] L.Gr. Ixaru,et al. Operations on oscillatory functions , 1997 .
[19] Beatrice Paternoster,et al. Exponential fitting Direct Quadrature methods for Volterra integral equations , 2010, Numerical Algorithms.
[21] H. De Meyer,et al. Exponentially-fitted explicit Runge–Kutta methods , 1999 .
[22] Beatrice Paternoster,et al. On the Employ of Time Series in the Numerical Treatment of Differential Equations Modeling Oscillatory Phenomena , 2016, WIVACE.
[23] Beatrice Paternoster,et al. Revised exponentially fitted Runge-Kutta-Nyström methods , 2014, Appl. Math. Lett..
[24] Beatrice Paternoster,et al. Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval , 2014, J. Comput. Appl. Math..
[25] Beatrice Paternoster,et al. Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection , 2012, Appl. Math. Comput..
[26] Beatrice Paternoster,et al. Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution , 2015, Math. Comput. Simul..
[27] Manuel Calvo,et al. Functionally Fitted Explicit Two Step Peer Methods , 2015, J. Sci. Comput..
[28] Rüdiger Weiner,et al. Doubly quasi-consistent parallel explicit peer methods with built-in global error estimation , 2010, J. Comput. Appl. Math..
[29] Manuel Calvo,et al. Explicit Runge-Kutta methods for initial value problems with oscillating solutions , 1996 .
[30] R. D'Ambrosio,et al. Numerical solution of reaction-diffusion systems of λ - ω type by trigonometrically fitted methods , 2016 .
[31] Kazufumi Ozawa,et al. A functional fitting Runge-Kutta method with variable coefficients , 2001 .
[32] Rüdiger Weiner,et al. Parallel start for explicit parallel two-step peer methods , 2009, Numerical Algorithms.
[33] Rüdiger Weiner,et al. Implicit parallel peer methods for stiff initial value problems , 2005 .
[34] Beatrice Paternoster,et al. Some new uses of the etam(Z) functions , 2010, Comput. Phys. Commun..
[35] Raffaele D’Ambrosio,et al. Numerical solution of a diffusion problem by exponentially fitted finite difference methods , 2014, SpringerPlus.
[36] H. De Meyer,et al. Deferred correction with mono-implicit Runge-Kutta methods for first-order IVPs , 1999 .
[37] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.