Solving Linear Systems through Nested Dissection

The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal method for solving a linear system Ax=b where A is a symmetric positive definite matrix. The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection method to apply to any non-singular well-separable matrix over any field. The running times we obtain essentially match those of the nested dissection method.

[1]  Piotr Sankowski,et al.  Maximum matchings in planar graphs via gaussian elimination , 2004, Algorithmica.

[2]  Bruce A. Reed,et al.  A Separator Theorem in Minor-Closed Classes , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[3]  Gilles Villard,et al.  Solving sparse rational linear systems , 2006, ISSAC '06.

[4]  Oscar H. Ibarra,et al.  A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.

[5]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[6]  David Bruce Wilson,et al.  Determinant algorithms for random planar structures , 1997, SODA '97.

[7]  R. Tarjan,et al.  The analysis of a nested dissection algorithm , 1987 .

[8]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.

[9]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[10]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[11]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[12]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[13]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[14]  D. Spielman,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[15]  Raphael Yuster,et al.  Maximum matching in graphs with an excluded minor , 2007, SODA '07.

[16]  D. Rose,et al.  Generalized nested dissection , 1977 .

[17]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[18]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[19]  V. Strassen Gaussian elimination is not optimal , 1969 .

[20]  Bojan Mohar,et al.  A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface , 1999, SIAM J. Discret. Math..

[21]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[22]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[23]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  Raphael Yuster Matrix Sparsification for Rank and Determinant Computations via Nested Dissection , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[27]  B. Reed,et al.  Fast separation in a graph with an excluded minor , 2004 .

[28]  Bruce A. Reed,et al.  A linear-time algorithm to find a separator in a graph excluding a minor , 2009, TALG.