Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

[1]  Alexandru Vlad,et al.  Roll up nanowire battery from silicon chips , 2012, Proceedings of the National Academy of Sciences.

[2]  P. Ajayan,et al.  3D nanoporous nanowire current collectors for thin film microbatteries. , 2012, Nano letters.

[3]  S. Nagarajan,et al.  Facile One-Pot Synthesis of Inden-1-ol Derivatives. , 2012 .

[4]  卢丽莎,et al.  LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的合成及其过充电性能 , 2012 .

[5]  P. Ajayan,et al.  Building energy storage device on a single nanowire. , 2011, Nano letters.

[6]  P. Vemula,et al.  Biorefinery: a design tool for molecular gelators. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[8]  Jean-Marie Tarascon,et al.  Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. , 2009, Journal of the American Chemical Society.

[9]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[10]  George John,et al.  Crops: A Green Approach Toward Self-Assembled Soft Materials , 2008 .

[11]  M. Hughes,et al.  Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008, Proceedings of the National Academy of Sciences.

[12]  George John,et al.  Crops: a green approach toward self-assembled soft materials. , 2008, Accounts of chemical research.

[13]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[14]  M. Armand,et al.  Building better batteries , 2008, Nature.

[15]  Masaharu Satoh,et al.  Synthesis and charge/discharge properties of polyacetylenes carrying 2,2,6,6-tetramethyl-1-piperidinoxy radicals. , 2007, Chemistry.

[16]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[17]  M. Pasquali,et al.  Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. , 2005, Waste management.

[18]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[19]  Y. Pocker,et al.  Modulation of tautomeric equilibria by ionic clusters. Acetylacetone in solutions of lithium perchlorate-diethyl ether. , 2002, Journal of the American Chemical Society.

[20]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[21]  Malcolm K. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.

[22]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[23]  J. Tait,et al.  Challenges and opportunities. , 1996, Journal of psychiatric and mental health nursing.

[24]  Bruno Scrosati,et al.  Applications of electroactive polymers , 1993 .

[25]  Jiirgen Heinze,et al.  Electronically conducting polymers , 1990 .

[26]  D. Seebach Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C‐Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures , 1988 .

[27]  Jan-Erik Österholm,et al.  Critical aspects of organic polymer batteries , 1987 .

[28]  Alan G. MacDiarmid,et al.  Polyaniline: Electrochemistry and application to rechargeable batteries , 1987 .

[29]  M. Armand Utilization of Conductive Polymers in Rechargeable Batteries , 1985 .

[30]  A. MacDiarmid,et al.  A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode , 1984 .

[31]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[32]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[33]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .