Near-Space Vehicle-Borne SAR With Reflector Antenna for High-Resolution and Wide-Swath Remote Sensing

Near-space is recognized as the atmospheric region from 20 to 100 km above the Earth's surface. Near-space vehicles offer several advantages compared to low earth orbit satellites and airplanes because near-space vehicles are not constrained by orbital mechanics and fuel consumption. These advantages provide potential for future remote sensing applications, but little related work has been published. This paper explains what near-space is and how it should be exploited for remote sensing applications. A near-space vehicle-borne synthetic aperture radar (SAR) with reflector antenna and digital beamforming on receive is proposed for high-resolution and wide-swath (HRWS) remote sensing. The system configuration, signal model, imaging scheme, system performance, and nadir echo suppression are investigated. An example system is conceptually designed, along with its system performance analysis. It is shown that the near-space vehicle-borne SAR with reflector antenna can operate with high flexibility and reconfigurability, thus enabling a satisfactory HRWS remote sensing performance.

[1]  Gerhard Krieger,et al.  Concept design of a near-space radar for tsunami detection , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[2]  M.J. Marcel,et al.  Interdisciplinary design of a near space vehicle , 2007, Proceedings 2007 IEEE SoutheastCon.

[3]  Xiaoming Li,et al.  Ocean Wave Integral Parameter Measurements Using Envisat ASAR Wave Mode Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[5]  Gerhard Krieger,et al.  SAR signal reconstruction from non-uniform displaced phase centre sampling in the presence of perturbations , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[6]  F. Li,et al.  Ambiguities in Spacebornene Synthetic Aperture Radar Systems , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[7]  G. Krieger,et al.  Performance Investigation on the High-Resolution Wide-Swath SAR System with Monostatic Architecture , 2010 .

[8]  Buford R. Jean,et al.  A Multiple Beam Synthetic Aperture Radar Design Concept for Geoscience Applications , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Ed Mel Tomme,et al.  Balloons in Today's Military? an Introduction to the Near-Space Concept , 2005 .

[10]  I. Longstaff,et al.  Wide-swath space-borne SAR using a quad-element array , 1999 .

[11]  Thomas Fritz,et al.  Ship Surveillance With TerraSAR-X , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Urs Wegmüller,et al.  Signatures of ERS–Envisat Interferometric SAR Coherence and Phase of Short Vegetation: An Analysis in the Case of Maize Fields , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Jingye Cai,et al.  Passive Ocean Remote Sensing by Near-Space Vehicle-borne GPS Receiver , 2011 .

[14]  Werner Wiesbeck,et al.  Digital beamforming in SAR systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[15]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Giulio Romeo,et al.  Heliplat®: high altitude very-long endurance solar powered UAV for telecommunication and Earth observation applications , 2004, The Aeronautical Journal (1968).

[17]  Wen-Qin Wang,et al.  Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis , 2010, Remote. Sens..

[18]  Sigurd Huber,et al.  Digital Beam Forming Techniques for Spaceborne Reflector SAR Systems , 2010 .

[19]  Jocelyn Chanussot,et al.  Combining Airborne Photographs and Spaceborne SAR Data to Monitor Temperate Glaciers: Potentials and Limits , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Gerhard Krieger,et al.  Digital Beamforming for HRWS-SAR Imaging: System Design, Performance and Optimization Strategies , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[21]  Gerhard Krieger,et al.  A Concept for a High Performance Reflector-Based X-Band SAR , 2010 .

[22]  Gerhard Krieger,et al.  Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Guangfu Ma,et al.  Adaptive variable structure controller for spacecraft vibration reduction , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Nathan A. Goodman,et al.  Wide swath, high resolution SAR using multiple receive apertures , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[25]  Zheng Bao,et al.  Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems , 2005, IEEE Geosci. Remote. Sens. Lett..

[26]  A. Jain,et al.  Multibeam synthetic aperture radar for global oceanography , 1979 .

[27]  Gerhard Krieger,et al.  Errata: Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009 .

[28]  Gerhard Krieger,et al.  Advanced Concepts for Ultra-Wide-Swath SAR Imaging , 2008 .

[29]  Wen-Qin Wang Application of Near-Space Passive Radar for Homeland Security , 2007 .

[30]  Wen-Qin Wang,et al.  Near-space SAR: A revolutionary microwave remote sensing mission , 2007, 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar.

[31]  Wen-Qin Wang,et al.  Waveform-Diversity-Based Millimeter-Wave UAV SAR Remote Sensing , 2009, IEEE Trans. Geosci. Remote. Sens..

[32]  M. Suess,et al.  A novel high resolution, wide swath SAR system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[33]  Gerhard Krieger,et al.  Digital beam-forming for spaceborne reflector- and planar-antenna SAR — A system performance comparison , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[34]  C. Heer,et al.  Dual-Polarized Feed-Cluster for a Reflector-Based Multi-Beam Sar Antenna , 2007, 2007 17th International Crimean Conference - Microwave & Telecommunication Technology.

[35]  Gerhard Krieger,et al.  Definition of ICESat Selection Criteria for Their Use as Height References for TanDEM-X , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[36]  G. Krieger,et al.  Potential of digital beamforming in bi- and multistatic SAR , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[37]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[38]  Gerhard Krieger,et al.  A high resolution wide swath SAR , 2006 .

[39]  Pierfrancesco Lombardo,et al.  Monitoring and surveillance potentialities obtained by splitting the antenna of the COSMO-SkyMed SAR into multiple sub-apertures , 2006 .

[40]  Gerhard Krieger,et al.  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling , 2004, IEEE Geoscience and Remote Sensing Letters.

[41]  L. Shafai,et al.  Novel multiple phase centre reflector antenna for GMTI radar , 2004 .

[42]  Fotini-Niovi Pavlidou,et al.  Broadband communications via high-altitude platforms: a survey , 2005, IEEE Communications Surveys & Tutorials.

[43]  Sigurd Huber,et al.  Performance Comparison of Reflector- and Planar-Antenna Based Digital Beam-Forming SAR , 2009 .

[44]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[45]  Edward B. Tomme,et al.  The Paradigm Shift to Effects-Based Space Near-Space as a Combat Space Effects Enabler , 2012 .

[46]  Gerhard Krieger,et al.  High performance reflector-based Synthetic Aperture Radar: -A system performance analysis - , 2010, 11-th INTERNATIONAL RADAR SYMPOSIUM.

[47]  Guangfu Ma,et al.  Adaptive Variable Structure Maneuvering Control and Vibration Reduction of Three-axis Stabilized Flexible Spacecraft , 2006, Eur. J. Control.

[48]  Richard K. Moore,et al.  Scanning Spaceborne Synthetic Aperture Radar with Integrated Radiometer , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Zheng Bao,et al.  Performance improvement for constellation SAR using signal processing techniques , 2006 .

[50]  C. Heer,et al.  Investigations on a new high resolution wide swath SAR concept , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[51]  Marwan Younis,et al.  Design Aspects and Performance Estimation of the Reflector Based Digital Beam-Forming SAR System , 2009 .

[52]  Francesco De Zan,et al.  TOPSAR: Terrain Observation by Progressive Scans , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Zheng Bao,et al.  A novel approach for wide‐swath and high‐resolution SAR image generation from distributed small spaceborne SAR systems , 2006 .

[54]  Peter Steigenberger,et al.  Imaging Geodesy—Toward Centimeter-Level Ranging Accuracy With TerraSAR-X , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[56]  Gerhard Krieger,et al.  Reflector-based digital beam-forming radar system for space debris detection , 2010, 11-th INTERNATIONAL RADAR SYMPOSIUM.

[57]  Wen-Qin Wang,et al.  Near-Space Wide-Swath Radar Imaging With Multiaperture Antenna , 2009, IEEE Antennas and Wireless Propagation Letters.