Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition

This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities.

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[3]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[4]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[5]  M. Boileau,et al.  LES of an ignition sequence in a gas turbine engine , 2008 .

[6]  S. Richard,et al.  LES prediction and analysis of knocking combustion in a spark ignition engine , 2015 .

[7]  Alison S. Tomlin,et al.  Determining predictive uncertainties and global sensitivities for large parameter systems: A case study for N-butane oxidation , 2015 .

[8]  Houman Owhadi,et al.  Handbook of Uncertainty Quantification , 2017 .

[9]  A. Raftery Bayes Factors and BIC , 1999 .

[10]  C Cemil Bekdemir,et al.  Predicting diesel combustion characteristics with Large-Eddy Simulations including tabulated chemical kinetics , 2013 .

[11]  F. Egolfopoulos,et al.  Chemical kinetic model uncertainty minimization through laminar flame speed measurements. , 2016, Combustion and flame.

[12]  Guilhem Lacaze,et al.  Modeling Auto-Ignition Transients in Reacting Diesel Jets , 2015 .

[13]  T. Poinsot,et al.  Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame , 2012 .

[14]  Christer Fureby,et al.  Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet , 2010 .

[15]  Todd A. Oliver,et al.  Bayesian uncertainty quantification applied to RANS turbulence models , 2011 .

[16]  Robert E Weiss,et al.  Bayesian methods for data analysis. , 2010, American journal of ophthalmology.

[17]  Michael Frenklach,et al.  Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics , 1983 .

[18]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[19]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[20]  Dongbin Xiu,et al.  Numerical strategy for model correction using physical constraints , 2016, J. Comput. Phys..

[21]  Thierry Poinsot,et al.  Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors , 2008 .

[22]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[23]  Hai Wang,et al.  Combustion kinetic model uncertainty quantification, propagation and minimization , 2015 .

[24]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[25]  Julien Bohbot,et al.  An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations , 2016 .

[26]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[27]  Todd A. Oliver,et al.  Bayesian analysis of syngas chemistry models , 2013 .

[28]  P. Pepiot,et al.  A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates , 2014 .

[29]  Nial Friel,et al.  Estimating the evidence – a review , 2011, 1111.1957.

[30]  Michael Frenklach,et al.  Optimization of combustion kinetic models on a feasible set , 2011 .

[31]  H. Najm,et al.  Inference of reaction rate parameters based on summary statistics from experiments , 2017 .

[32]  T. Turányi,et al.  Optimization of a hydrogen combustion mechanism using both direct and indirect measurements , 2015 .

[33]  Tamás Varga,et al.  Determination of rate parameters based on both direct and indirect measurements , 2012 .

[34]  H. Najm,et al.  On the Statistical Calibration of Physical Models: STATISTICAL CALIBRATION OF PHYSICAL MODELS , 2015 .

[35]  O. Knio,et al.  A hierarchical method for Bayesian inference of rate parameters from shock tube data: Application to the study of the reaction of hydroxyl with 2-methylfuran , 2017 .

[36]  Joseph C. Oefelein,et al.  A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows , 2017, J. Comput. Phys..

[37]  Olivier Colin,et al.  Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations , 2005 .

[38]  Frederick L. Dryer,et al.  High-temperature oxidation of CO and CH4 , 1973 .

[39]  Michael Frenklach,et al.  Integrated data-model analysis facilitated by an Instrumental Model , 2015 .

[40]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[41]  J. Oefelein,et al.  Non-equilibrium gas–liquid interface dynamics in high-pressure liquid injection systems , 2015 .

[42]  Joseph C. Oefelein,et al.  On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures , 2013 .

[43]  Gianluca Iaccarino,et al.  Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures , 2013 .

[44]  Paul W. Nyholm,et al.  Engine combustion network. , 2010 .

[45]  Tamás Turányi,et al.  Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms , 2004 .

[46]  M. Arienti,et al.  On Multi-Fluid models for spray-resolved LES of reacting jets , 2017 .

[47]  Thierry Poinsot,et al.  Large eddy simulation of mean and oscillating flow in a side-dump ramjet combustor , 2008 .

[48]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[49]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[50]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[51]  Pascal Pernot,et al.  Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation. , 2011, The Journal of chemical physics.

[52]  Qing Liu,et al.  A note on Gauss—Hermite quadrature , 1994 .

[53]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[54]  Ossi Kaario,et al.  Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds , 2016 .

[55]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[56]  T. Poinsot,et al.  A two-step chemical scheme for kerosene–air premixed flames , 2010 .

[57]  Michael Frenklach,et al.  Transforming data into knowledge—Process Informatics for combustion chemistry , 2007 .

[58]  D. Shahsavani,et al.  Variance-based sensitivity analysis of model outputs using surrogate models , 2011, Environ. Model. Softw..

[59]  X. Bai,et al.  Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel , 2014 .

[60]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[61]  B. Cuenot,et al.  Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry , 2012 .

[62]  Guilhem Lacaze,et al.  Analysis of high-pressure Diesel fuel injection processes using LES with real-fluid thermodynamics and transport , 2013 .

[63]  K. Daun,et al.  Inverse analysis and regularisation in conditional source-term estimation modelling , 2014 .

[64]  A. Pires da Cruz,et al.  THREE-DIMENSIONAL MODELING OF SELF-IGNITION IN HCCI AND CONVENTIONAL DIESEL ENGINES , 2004 .

[65]  Serge Prudhomme,et al.  Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen , 2011, J. Comput. Phys..

[66]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[67]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[68]  David A. Sheen,et al.  Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane , 2011 .

[69]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[70]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[71]  Tianfeng Lu,et al.  Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model , 2012 .

[72]  Peter J Seiler,et al.  Collaborative data processing in developing predictive models of complex reaction systems , 2004 .

[73]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[74]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[75]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[76]  Thierry Poinsot,et al.  LES study of cycle-to-cycle variations in a spark ignition engine , 2011 .

[77]  C. Bowman,et al.  An experimental and kinetic modeling study of n-dodecane pyrolysis and oxidation , 2016 .

[78]  David A. Sheen,et al.  The method of uncertainty quantification and minimization using polynomial chaos expansions , 2011 .

[79]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[80]  Terese Løvås,et al.  Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion , 2009 .

[81]  Je Hyeong Hong,et al.  Bayesian Error Propagation for a Kinetic Model of n-Propylbenzene Oxidation in a Shock Tube , 2014 .

[82]  M. J. Bayarri,et al.  Computer model validation with functional output , 2007, 0711.3271.

[83]  北川 源四郎,et al.  Information criteria and statistical modeling , 2008 .

[84]  Habib N. Najm,et al.  Uncertainty quantification in the ab initio rate-coefficient calculation for the reaction , 2013 .

[85]  Serge Prudhomme,et al.  Estimation of the nitrogen ionization reaction rate using electric arc shock tube data and Bayesian model analysis , 2012 .

[86]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[87]  Sai Hung Cheung,et al.  Using Bayesian analysis to quantify uncertainties in the H + O2 → OH + O reaction , 2013 .

[88]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[89]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[90]  P. K. Senecal,et al.  Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions , 2015 .

[91]  Tamás Turányi,et al.  Uncertainty of Arrhenius parameters , 2011 .

[92]  F. Jaberi,et al.  Large eddy simulation of turbulent spray combustion , 2015 .

[93]  Joseph C. Oefelein,et al.  Understanding high-pressure gas-liquid interface phenomena in Diesel engines , 2013 .

[94]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[95]  W. Jones,et al.  Large Eddy Simulation of Spray Auto-ignition Under EGR Conditions , 2016 .

[96]  Chung King Law,et al.  Skeletal Reaction Model Generation, Uncertainty Quantification and Minimization: Combustion of Butane , 2014 .

[97]  Bin Yang,et al.  Using sensitivity entropy in experimental design for uncertainty minimization of combustion kinetic models , 2017 .

[98]  Alison S. Tomlin,et al.  The role of sensitivity and uncertainty analysis in combustion modelling , 2013 .

[99]  Forman A. Williams,et al.  A simple one-step chemistry model for partially premixed hydrocarbon combustion , 2006 .

[100]  Jeremy E. Oakley,et al.  Managing structural uncertainty in health economic decision models: a discrepancy approach , 2012 .

[101]  Jeremy E. Oakley,et al.  When Is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifying Internal Model Discrepancies , 2014, SIAM/ASA J. Uncertain. Quantification.

[102]  J. Oefelein,et al.  Large Eddy Simulation of Autoignition Transients in a Model Diesel Injector Configuration , 2016 .

[103]  Wing Tsang,et al.  Kinetics of H atom attack on unsaturated hydrocarbons using spectral uncertainty propagation and minimization techniques , 2013 .

[104]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[105]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[106]  Guilhem Lacaze,et al.  Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes. , 2014 .

[107]  Tiangang Cui,et al.  Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..

[108]  Tamás Turányi,et al.  Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models , 2012, Reliab. Eng. Syst. Saf..

[109]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[110]  Michael S. Eldred,et al.  Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models. , 2015 .

[111]  C. Westbrook,et al.  Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , 1981 .

[112]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[113]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[114]  Habib N. Najm,et al.  Probabilistic inference of reaction rate parameters from summary statistics , 2018, Combustion Theory and Modelling.

[115]  Yuanjiang Pei,et al.  Large Eddy Simulation of a Reacting Spray Flame under Diesel Engine Conditions , 2015 .

[116]  Xun Huan,et al.  Global Sensitivity Analysis and Quantification of Model Error for Large Eddy Simulation in Scramjet Design , 2017 .

[117]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[118]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[119]  T. Turányi,et al.  Investigation of ethane pyrolysis and oxidation at high pressures using global optimization based on shock tube data , 2017 .

[120]  S. Cheung,et al.  Bayesian uncertainty quantification of recent shock tube determinations of the rate coefficient of reaction H + O2 OH + O , 2012 .

[121]  Thierry Poinsot,et al.  A methodology based on reduced schemes to compute autoignition and propagation in internal combustion engines , 2015 .

[122]  R. Stephenson A and V , 1962, The British journal of ophthalmology.