Strain sensor calibration using extrinsic Fabry-Pérot interferometric sensors

Strain sensor calibration is investigated using extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors. The approach is based on the Bessel harmonic components from the nonlinear EFPI output signal under sinusoidal excitation. For known sensor parameters of optical wavelength and gauge length, the local maxima and minima of each Bessel harmonic profile occur for specific strain levels. The theoretical Bessel harmonic profiles are shown and a calibration approach is proposed using local maxima and minima in selected Bessel harmonics. The signal from a colocated companion strain sensor can be calibrated by comparison to salient EFPI reference strains. An experimental implementation is demonstrated for a polyvinylidene fluoride (PVDF) piezoelectric strain sensor that is colocated with an EFPI reference sensor on a cantilever beam apparatus. The experimental strains at the local maxima and minima closely match the strains determined theoretically.

[1]  James S. Sirkis,et al.  Phase-strain-temperature model for structurally embedded interferometric optical fiber strain sensors with applications , 1991, Other Conferences.

[2]  Kent A. Murphy,et al.  Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors , 1995 .

[3]  Kent A. Murphy,et al.  Optical fiber sensors for measurement of strain and acoustic waves , 1993, Smart Structures.

[4]  Steve Eugene Watkins,et al.  Modal analysis using the Bessel harmonics of an extrinsic Fabry-Perot interferometric sensor (EFPI) and neural networks , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  Raymond M. Measures,et al.  Development of a fiber Fabry-Perot strain gauge , 1991, Other Conferences.

[6]  Rohit Dua,et al.  Demodulation of Extrinsic Fabry-Pérot Interferometric Sensors for Vibration Testing Using Neural Networks , 2004 .

[7]  K. F. Hale,et al.  An optical-fibre fatigue crack-detection and monitoring system , 1992 .

[8]  W J Bock,et al.  Contrast analysis for a fiber-optic white-light interferometric system. , 1997, Applied optics.

[9]  K. Chandrashekhara,et al.  Modal analysis using fiber optic sensors and neural networks for prediction of composite beam delamination , 2002 .

[10]  Ying Zhang,et al.  Design and testing of a hybrid-mode PVDF displacement sensor for low-frequency infrastructure monitoring , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  David A. Jackson,et al.  A simple fibre Fabry-Perot sensor , 1983 .

[12]  A. Dandridge,et al.  Measurement of small phase shifts using a single-mode optical-fiber interferometer. , 1980, Optics letters.

[13]  広 久保田,et al.  Principle of Optics , 1960 .

[14]  Henry F. Taylor,et al.  Optical fiber Fabry-Perot sensors for smart structures , 1992 .

[15]  Toshihiko Yoshino,et al.  Fiber-optic Fabry-Perot interferometer and its sensor applications , 1982 .

[16]  Ming L. Wang,et al.  Development of a PVDF film sensor for infrastructure monitoring , 1999, Smart Structures.

[17]  Tetsuro Obara,et al.  The construction and calibration of an inexpensive PVDF stress gauge for fast pressure measurements , 1995 .

[18]  Eric Udd,et al.  Fiber Optic Sensors , 1992 .

[19]  Abdeq M. Abdi Neural network demodulation for frequency response measurement of a fiber optic-based smart beam , 1999 .

[20]  Jingfeng Xue,et al.  The application of Bessel function methods on high-frequency vibration calibration , 2004, International Conference on Vibration Measurements by Laser Techniques: Advances and Applications.

[21]  Gerard Franklyn Fernando,et al.  An intensity-based optical fibre sensor for fatigue damage detection in advanced fibre-reinforced composites , 1995 .

[22]  Richard O. Claus,et al.  Performance of embedded short-gage-length optical fiber sensors in a fatigue-loaded reinforced concrete specimen , 1995 .

[23]  Deepak Uttamchandani,et al.  Modified J(1) ... J(4) method for linear readout of dynamic phase changes in a fiber-optic homodyne interferometer. , 1991, Applied optics.

[24]  Richard O. Claus,et al.  TECHNICAL NOTE: Geometric analysis of optical fiber EFPI sensor performance , 1998 .