Tryptophan-surface modification of versatile peroxidase from Bjerkandera adusta enhances its catalytic performance

[1]  R. Basosi,et al.  EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta , 2015, Environmental Science and Pollution Research.

[2]  M. Ayala,et al.  Peroxidase activity stabilization of cytochrome P450(BM3) by rational analysis of intramolecular electron transfer. , 2013, Journal of inorganic biochemistry.

[3]  M. Maté,et al.  Two Oxidation Sites for Low Redox Potential Substrates , 2012, The Journal of Biological Chemistry.

[4]  G. Feijoo,et al.  Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: production, partial characterization and application for the elimination of endocrine disruptors. , 2011, Bioresource technology.

[5]  R. Basosi,et al.  Crystallographic, Kinetic, and Spectroscopic Study of the First Ligninolytic Peroxidase Presenting a Catalytic Tyrosine* , 2011, The Journal of Biological Chemistry.

[6]  E. Torres,et al.  Biocatalysis based on heme peroxidases : peroxidases as potential industrial biocatalysts , 2010 .

[7]  M. Hofrichter,et al.  New and classic families of secreted fungal heme peroxidases , 2010, Applied Microbiology and Biotechnology.

[8]  F. J. Ruiz-Dueñas,et al.  Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. , 2009, Journal of experimental botany.

[9]  M. Pickard,et al.  Fungal Enzymes for Environmental Purposes, a Molecular Biology Challenge , 2008, Journal of Molecular Microbiology and Biotechnology.

[10]  Takahito Watanabe,et al.  Mechanism for Oxidation of High-Molecular-Weight Substrates by a Fungal Versatile Peroxidase, MnP2 , 2008, Applied and Environmental Microbiology.

[11]  M. Maté,et al.  Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. , 2008, Biochemistry.

[12]  Eun Kyu Lee,et al.  Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability. , 2008, Journal of biotechnology.

[13]  R. Basosi,et al.  Tryptophan radicals as reaction intermediates in versatile peroxidases: Multifrequency EPR, ENDOR and density functional theory studies , 2007 .

[14]  R. Vazquez-Duhalt,et al.  Role of oxidizing mediators and tryptophan 172 in the decoloration of industrial dyes by the versatile peroxidase from Bjerkandera adusta , 2007 .

[15]  B. Valderrama,et al.  Oxidative stabilization of iso‐1‐cytochrome c by redox‐inspired protein engineering , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  R. Basosi,et al.  Mechanism of versatile peroxidase inactivation by Ca(2+) depletion. , 2006, Biophysical chemistry.

[17]  K. Piontek,et al.  A Tryptophan Neutral Radical in the Oxidized State of Versatile Peroxidase from Pleurotus eryngii , 2006, Journal of Biological Chemistry.

[18]  J. Frère,et al.  Purification, kinetics and spectral characterisation of a new versatile peroxidase from a Bjerkandera Sp. isolate , 2006 .

[19]  K. Piontek,et al.  Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. , 2005, Journal of molecular biology.

[20]  B. Valderrama,et al.  Electron-balance during the oxidative self-inactivation of cytochrome c , 2005 .

[21]  Y. Honda,et al.  Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators. , 2005, The Biochemical journal.

[22]  W. Lubitz,et al.  Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. , 2005, Biochemistry.

[23]  M. Pickard,et al.  Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta , 2005 .

[24]  S. Agathos,et al.  White-rot fungi and their enzymes for the treatment of industrial dye effluents. , 2003, Biotechnology advances.

[25]  M. Pickard,et al.  Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. , 2003, Canadian journal of microbiology.

[26]  M. Pickard,et al.  Purification, Characterization, and Chemical Modification of Manganese Peroxidase from Bjerkandera adusta UAMH 8258 , 2002, Current Microbiology.

[27]  B. Valderrama,et al.  Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. , 2002, Chemistry & biology.

[28]  M. Gold,et al.  Lignin peroxidase oxidation of veratryl alcohol: effects of the mutants H82A, Q222A, W171A, and F267L. , 2002, Biochemistry.

[29]  R. Basosi,et al.  Spectroscopic characterization of a manganese–lignin peroxidase hybrid isozyme produced by Bjerkandera adusta in the absence of manganese: evidence of a protein centred radical by hydrogen peroxide , 2001 .

[30]  F. Arnold,et al.  Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. , 2001, Biotechnology and bioengineering.

[31]  A. D. Jones,et al.  Oxidation of a Tetrameric Nonphenolic Lignin Model Compound by Lignin Peroxidase* , 2001, The Journal of Biological Chemistry.

[32]  F. J. Ruiz-Dueñas,et al.  A new versatile peroxidase from Pleurotus. , 2001, Biochemical Society transactions.

[33]  K. Piontek,et al.  Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. , 1999, Archives of biochemistry and biophysics.

[34]  F. J. Ruiz-Dueñas,et al.  Description of a Versatile Peroxidase Involved in the Natural Degradation of Lignin That Has Both Manganese Peroxidase and Lignin Peroxidase Substrate Interaction Sites* , 1999, The Journal of Biological Chemistry.

[35]  Palle Schneider,et al.  Directed evolution of a fungal peroxidase , 1999, Nature Biotechnology.

[36]  H. Wariishi,et al.  Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  F. J. Ruiz-Dueñas,et al.  Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii , 1999, Molecular microbiology.

[38]  K. Piontek,et al.  Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. , 1998, Biochemistry.

[39]  U. Szewzyk,et al.  Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. , 1998, FEMS microbiology letters.

[40]  T. Mester,et al.  Characterization of a Novel Manganese Peroxidase-Lignin Peroxidase Hybrid Isozyme Produced by Bjerkandera Species Strain BOS55 in the Absence of Manganese* , 1998, The Journal of Biological Chemistry.

[41]  Á. T. Martínez,et al.  Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. , 1997, Biochimica et biophysica acta.

[42]  F. J. Ruiz-Dueñas,et al.  Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. , 1996, European journal of biochemistry.

[43]  A. English,et al.  Catalytic Structure-Function Relationships in Heme Peroxidases , 1995 .

[44]  H. Schoemaker,et al.  The oxidation of veratryl alcohol, dimeric lignin models and lignin by lignin peroxidase: The redox cycle revisited , 1994 .

[45]  H. Wariishi,et al.  Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. , 1992, The Journal of biological chemistry.

[46]  J. Collins,et al.  Homology modeling of a heme protein, lignin peroxidase, from the crystal structure of cytochrome c peroxidase. , 1992, Protein engineering.

[47]  P. Ortiz de Montellano,et al.  The catalytic site of manganese peroxidase. Regiospecific addition of sodium azide and alkylhydrazines to the heme group. , 1991, The Journal of biological chemistry.