Use of ground observations to simulate the seasonal changes in the backscattering coefficient of the subarctic forest

RADARSAT synthetic aperture radar (SAR) data acquired at C Band, HH polarization, and for the 20/spl deg/-27/spl deg/ and 45/spl deg/-49/spl deg/ incidence angle ranges were available over northern Quebec, Canada, (54/spl deg/N, 72/spl deg/12'W), in the fall of 1996, the winter of 1997, and the spring of 1997. The main land occupation of this area is sparse black spruce (Picea mariana) forests. Vegetation characteristics are jointly used with snow and soil observations coinciding with the satellite overpasses to simulate the seasonal changes in the backscattering coefficient of the subarctic forest. The aim of this study is twofold. First to evaluate the effects of the seasonal changes in vegetation on the RADARSAT SAR data, and second to use backscattering models as a tool for a better interpretation and understanding of the RADARSAT SAR data over snow-covered forested areas. Simulations show the importance of the surface-vegetation interaction term and the wet snow surface roughness on the discrimination between open forest and denser forest, and on the contrast between wet snow and dry snow covers. When comparing the simulations to the RADARSAT SAR data, the poorest results are obtained in the spring for a rough wet snow. It is shown that they are mainly due to a crude evaluation of the vegetation dielectric constant rather than to uncertainties introduced by the spatial variability in the wet snow surface roughness.

[1]  M. A. Karam,et al.  Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation , 1988 .

[2]  Juha Hyyppä,et al.  The seasonal behavior of interferometric coherence in boreal forest , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Jiancheng Shi,et al.  Monitoring of environmental conditions in Taiga forests using ERS-1 SAR , 1994 .

[4]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[5]  Jean-Pierre Fortin,et al.  Potential and limitations of RADARSAT SAR data for wet snow monitoring , 2000, IEEE Trans. Geosci. Remote. Sens..

[6]  T. Guneriussen,et al.  Backscattering properties of a wet snow cover derived from DEM corrected ERS-1 SAR data , 1997 .

[7]  Guoqing Sun,et al.  Boreal forest ecosystem characterization with SIR-C/XSAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[8]  Ramata Magagi,et al.  Quantitative analysis of RADARSAT SAR data over a sparse forest canopy , 2002, IEEE Trans. Geosci. Remote. Sens..

[9]  F.J. Ahern,et al.  Seasonal changes in relative C-band backscatter of northern forest cover types , 1993, IEEE Trans. Geosci. Remote. Sens..

[10]  D. Kane,et al.  Monitoring the unfrozen water content of soil and snow using time domain reflectometry , 1983 .

[11]  K. Jon Ranson,et al.  Radar modeling of a boreal forest , 1991, IEEE Trans. Geosci. Remote. Sens..

[12]  A. Luscombe,et al.  The RADARSAT Synthetic Aperture Radar Development , 1993 .

[13]  Christian Mätzler,et al.  Applications of the interaction of microwaves with the natural snow cover , 1987 .

[14]  Kamal Sarabandi,et al.  Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[15]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[16]  Guoqing Sun,et al.  Effects of environmental conditions on boreal forest classification and biomass estimates with SAR , 2000, IEEE Trans. Geosci. Remote. Sens..

[17]  David M. Le Vine,et al.  A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory , 1995 .

[18]  James M. Ehrman,et al.  Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers , 1998 .

[19]  Martti Hallikainen,et al.  The use of ERS-1 SAR data in snow melt monitoring , 1997, IEEE Trans. Geosci. Remote. Sens..

[20]  Fawwaz Ulaby,et al.  Microwave Dielectric Spectrum of Vegetation-Part I: Experimental Observations , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[21]  N. Baghdadi Capability of multitemporal ERS-1 SAR data for wet-snow mapping , 1997 .

[22]  Jiancheng Shi,et al.  Inferring snow wetness using C-band data from SIR-C's polarimetric synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[23]  J. Fortin,et al.  Operational determination of snow water equivalent using Radarsat data over a large hydroelectric complex in eastern Canada , 2001 .

[24]  Juha Hyyppä,et al.  Backscattering properties of boreal forests at the C- and X-bands , 1994, IEEE Trans. Geosci. Remote. Sens..

[25]  Helmut Rott,et al.  Retrieval of wet snow by means of multitemporal SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[26]  T. I. Lukowski,et al.  RADARSAT image quality and calibration — Update , 1999 .

[27]  Fawwaz Ulaby,et al.  Microwave Dielectric Spectrum of Vegetation - Part II: Dual-Dispersion Model , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[28]  E. Schanda Microwave Modelling of Snow and Soil , 1987 .

[29]  J.T. Pulliainen,et al.  Seasonal dynamics of C-band backscatter of boreal forests with applications to biomass and soil moisture estimation , 1996, IEEE Trans. Geosci. Remote. Sens..

[30]  D. M. Gates Water relations of forest trees , 1991, IEEE Trans. Geosci. Remote. Sens..

[31]  Harald Johnsen,et al.  DEM corrected ERS-1 SAR data for snow monitoring , 1996 .

[32]  John A. Richards,et al.  The effect of changing environmental conditions on microwave signatures of forest ecosystems - Preliminary results of the March 1988 Alaskan aircraft SAR experiment , 1990 .

[33]  Fawwaz T. Ulaby,et al.  Radiative transfer modelling of discontinuous tree canopies at microwave frequencies , 1993 .

[34]  Jakob J. van Zyl,et al.  Change detection techniques for ERS-1 SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..