Layer-Selective Switching of a Double-Layer Perpendicular Magnetic Nanodot Using Microwave Assistance

City planners know how to stretch real estate: build upward. The same idea may be used to densify memory or other components on a chip. The authors demonstrate layer-selective microwave-assisted switching in a magnetic nanodot, exploiting the different ferromagnetic resonance frequencies of its two layers. This method presents a writing process for next-generation magnetic recording in three-dimensional media.

[1]  Satoshi Okamoto,et al.  Microwave assisted magnetic recording technologies and related physics , 2015 .

[2]  R. Sbiaa Frequency selection for magnetization switching in spin torque magnetic memory , 2015 .

[3]  K. Mizushima,et al.  Theoretical study of thermally activated magnetization switching under microwave assistance: Switching paths and barrier height , 2015 .

[4]  K. Mizushima,et al.  Resonant magnetization switching induced by spin-torque-driven oscillations and its use in three-dimensional magnetic storage applications , 2015 .

[5]  K. Mizushima,et al.  Microwave-assisted switching of a single perpendicular magnetic tunnel junction nanodot , 2015 .

[6]  T. Taniguchi Magnetization reversal condition for a nanomagnet within a rotating magnetic field , 2014, 1407.7095.

[7]  K. Mizushima,et al.  Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator , 2014, Nanotechnology.

[8]  S. Okamoto,et al.  Size dependence of magnetization switching and its dispersion of Co/Pt nanodots under the assistance of radio frequency fields , 2014 .

[9]  S. Yuasa,et al.  Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer , 2014 .

[10]  K. Mizushima,et al.  Readout method from antiferromagnetically coupled perpendicular magnetic recording media using ferromagnetic resonance , 2013 .

[11]  Terumitsu Tanaka,et al.  Selective magnetization switching with microwave assistance for three-dimensional magnetic recording , 2013 .

[12]  S. Okamoto,et al.  Switching behaviors and its dynamics of a Co/Pt nanodot under the assistance of rf fields. , 2012, Physical review letters.

[13]  S. Okamoto,et al.  Significant Reduction of Switching Field and its Distribution in Co/Pt Nanodots with Assistance of Radio Frequency Field , 2012 .

[14]  D. Litvinov,et al.  Multilevel-3D Bit Patterned Magnetic Media with 8 Signal Levels Per Nanocolumn , 2012, PloS one.

[15]  H. Imamura,et al.  Study on High-Frequency 3–D Magnetization Precession Modes of Circular Magnetic Nano-Dots Using Coplanar Wave Guide Vector Network Analyzer Ferromagnetic Resonance , 2012, IEEE Transactions on Magnetics.

[16]  K. Mizushima,et al.  Influence of dynamical dipolar coupling on spin-torque-induced excitations in a magnetic tunnel junction nanopillar , 2012 .

[17]  H. Iwasaki,et al.  Future Options for HDD Storage , 2009, IEEE Transactions on Magnetics.

[18]  M. A. Bashir,et al.  Microwave-assisted three-dimensional multilayer magnetic recording , 2009 .

[19]  H. Bertram,et al.  Microwave-assisted magnetization reversal and multilevel recording in composite media , 2009 .

[20]  M. Ohta,et al.  Magnetic force microscopy study of microwave-assisted magnetization reversal in submicron-scale ferromagnetic particles , 2007 .

[21]  S. J. Hermsdoerfer,et al.  Microwave assisted switching in a Ni81Fe19 ellipsoid , 2007 .

[22]  D. Litvinov,et al.  Physics considerations in the design of three-dimensional and multilevel magnetic recording , 2006 .

[23]  Guohan Hu,et al.  Magnetic dot arrays with multiple storage layers , 2005 .

[24]  B. Diény,et al.  Multilevel magnetic media in continuous and patterned films with out-of-plane magnetization , 2005 .

[25]  D. Mailly,et al.  Switching of magnetization by nonlinear resonance studied in single nanoparticles , 2003, Nature materials.

[26]  Eric E. Fullerton,et al.  Magnetic recording: advancing into the future , 2002 .

[27]  J. Zhu,et al.  Microwave Assisted Magnetic Recording , 2008, IEEE Transactions on Magnetics.