标签:

Invertible Residual Networks

本文展示了如何将ResNet结构改变为可逆的结构,这种变更后的结构在分类、密度估计以及内容生成方面都适用。通常,强制网络结构可逆需要对网络进行维度划分并且需要限制网络结构。本文提出的方法仅需要在训练期间添加一个简单的规范化步骤,这在现有的机器学习框架中很容易实现。可逆的ResNets网络可以和现有的最好的图片分类器以及基于流的生成模型相媲美。这在之前,任何单个网络都是无法做到的。

本文展示了如何将ResNet结构改变为可逆的结构,这种变更后的结构在分类、密度估计以及内容生成方面都适用。通常,强制网络结构可逆需要对网络进行维度划分并且需要限制网络结构。本文提出的方法仅需要在训练期间添加一个简单的规范化步骤,这在现有的机器学习框架中很容易实现。可逆的ResNets网络可以和现有的最好的图片分类器以及基于流的生成模型相媲美。这在之前,任何单个网络都是无法做到的。