相关论文

A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow

Abstract:In this paper, we give a complete proof of the Poincare and the geometrization conjectures. This work depends on the accumulative works of many geometric analysts in the past thirty years. This proof should be considered as the crowning achievement of the Hamilton-Perelman theory of Ricci flow.

参考文献

[1]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[2]  John Stillwell,et al.  Three-Dimensional Manifolds , 1980 .

[3]  M. Berger Sur les groupes d'holonomie homogènes de variétés à connexion affine et des variétés riemanniennes , 1955 .

[4]  Shigefumi Mori,et al.  Proj ective manifolds with ample tangent bundles , 1979 .

[5]  The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature , 1988 .

[6]  Detlef Gromoll,et al.  On the Structure of Complete Manifolds of Nonnegative Curvature , 1972 .

[7]  S. Yau,et al.  Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature , 1982 .

[8]  Kenji Fukaya,et al.  Nilpotent structures and invariant metrics on collapsed manifolds , 1992 .

[9]  O. Rothaus,et al.  Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators , 1981 .

[10]  William Jaco,et al.  Seifert fibered spaces in 3-manifolds , 1979 .

[11]  H. Cao On Harnack's inequalities for the Kähler-Ricci flow , 1992 .

[12]  Shing-Tung Yau,et al.  ON THE UPPER ESTIMATE OF THE HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD , 1981 .

[13]  Klaus Johannson,et al.  Homotopy Equivalences of 3-Manifolds with Boundaries , 1979 .

[14]  Xu-jia Wang,et al.  Kahler-Ricci solitons on toric manifolds with positive first Chern class , 2004 .

[15]  Volume collapsed three-manifolds with a lower curvature bound , 2003, math/0304472.

[16]  T. Ivey Ricci solitons on compact three-manifolds , 1993 .

[17]  Gaussian densities and stability for some Ricci solitons , 2004, math/0404165.

[18]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[19]  S. Yau,et al.  The existence of embedded minimal surfaces and the problem of uniqueness , 1982 .

[20]  M. Struwe Curvature flows on surfaces , 2002 .

[21]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[22]  U. Abresch,et al.  Injectivity Radius Estimates and Sphere Theorems , 1997 .

[23]  S. Yau,et al.  On the structure of manifolds with positive scalar curvature , 1979 .

[24]  I. M. Singer,et al.  Infinitesimally homogeneous spaces , 1960 .

[25]  N. Wallach,et al.  An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures , 1975 .

[26]  Geometrization of 3-Manifolds via the Ricci Flow , 2003 .

[27]  J. Eschenburg,et al.  Curvature at infinity of open nonnegatively curved manifolds , 1989 .

[28]  Xiping Zhu,et al.  Complete Riemannian manifolds with pointwise pinched curvature , 2000 .

[29]  Sergey Nikitin On 3-manifolds , 2005 .

[30]  C. McMullen Renormalization and 3-Manifolds Which Fiber over the Circle , 1996 .

[31]  RECENT DEVELOPMENTS ON THE RICCI FLOW , 1998, math/9811123.

[32]  R. Greene,et al.  On a new gap phenomenon in riemannian geometry. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Limiting behaviour of the Ricci flow , 2004, math/0402194.

[34]  Friedhelm Waldhausen,et al.  Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I , 1967 .

[35]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[36]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[37]  Peng Lu,et al.  The maximum principle for systems of parabolic equations subject to an avoidance set , 2004 .

[38]  Shing-Tung Yau,et al.  A lower bound for the heat kernel , 1981 .

[39]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[40]  M. Micallef,et al.  Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes , 1988 .

[41]  A Uniformization Theorem For Complete Non-compact Kähler Surfaces With Positive Bisectional Curvature , 2002, math/0211372.

[42]  Yu. D. Burago,et al.  A.D. Alexandrov spaces with curvature bounded below , 1992 .

[43]  Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature , 2003, math/0304096.

[44]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[45]  Jean-Pierre Otal Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3 , 1996 .

[46]  Huai-Dong Cao,et al.  Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds , 1985 .

[47]  I. M. Singer,et al.  A THEOREM ON HOLONOMY , 1953 .

[48]  Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman , 2003, math/0308090.

[49]  J. Cheeger FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS. , 1970 .

[50]  Gopal Prasad Strong rigidity ofQ-rank 1 lattices , 1973 .

[51]  Ricci Flow with Surgery on Four-manifolds with Positive Isotropic Curvature , 2005, math/0504478.

[52]  Stanley Peters Convergence of riemannian manifolds , 1987 .

[53]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[54]  Shing-Tung Yau,et al.  Complete Kahler manifolds with nonpositive curvature of faster than quadratic decay1 , 1977 .

[55]  A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow , 2002, math/0211349.

[56]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[57]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[58]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[59]  N. Koiso On Rotationally Symmetric Hamilton’s Equation for Kähler–Einstein Metrics , 1990 .

[60]  M. Feldman,et al.  Rotationally symmetric shrinking and ex - panding gradient Kahler - Ricci solitons , 2003 .

[61]  J. Cheeger,et al.  COLLAPSING RIEMANNIAN MANIFOLDS WHILE KEEPING THEIR CURVATURE BOUNDED . II , 2008 .

[62]  T. Frankel Manifolds with positive curvature , 1961 .

[63]  G. Huisken Ricci deformation of the metric on a Riemannian manifold , 1985 .

[64]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[65]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .

[66]  Günter Drees Asymptotically flat manifolds of nonnegative curvature , 1994 .

[67]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[68]  S. Yau,et al.  The Poincaré-Lelong equation on complete Kähler manifolds , 1981 .

[69]  G. Mostow Strong Rigidity of Locally Symmetric Spaces. , 1973 .

[70]  Ricci flow on compact Kähler manifolds of positive bisectional curvature , 2003, math/0302087.

[71]  M. Gromov,et al.  The Classification of Simply Connected Manifolds of Positive Scalar Curvature Author ( s ) : , 2010 .

[72]  Jeff Cheeger,et al.  Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds , 1982 .

[73]  A new approach to the Ricci flow on $S^2$ , 1994 .

[74]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[75]  H. Cao Collected papers on Ricci flow , 2003 .

[76]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[77]  S. Bando On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature , 1984 .

[78]  Wolfgang Meyer,et al.  On Complete Open Manifolds of Positive Curvature , 1969 .

[79]  Jeff Cheeger,et al.  Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .

[80]  J. Morgan,et al.  On Thurston''s uniformization theorem for three-dimensional manifolds , 1984 .

引用
Geometry of Complete Gradient Shrinking Ricci Solitons
0903.3927
2009
3-Manifold Groups
1205.0202
2012
Noncompact Shrinking 4-Solitons with Nonnegative Curvature
0710.5579
2007
Homomorphisms to 3-manifold groups
2021
Markov chains on hyperbolic-like groups and quasi-isometries
2021
Discrete Surface Ricci Flow for General Surface Meshing in Computational Electromagnetics Using Iterative Adaptive Refinement
IEEE Transactions on Antennas and Propagation
2021
What Was, What Is, and What Will Be!
The Journal of invasive cardiology
2015
Automatic Generalized Quadrilateral Surface Meshing in Computational Electromagnetics by Discrete Surface Ricci Flow
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
2019
The symmetries of image formation by scattering. I. Theoretical framework.
Optics express
2010
Connection between continuous and digital n-manifolds and the Poincare conjecture
ArXiv
2006
Smooth surfaces with non-simply-connected complements
0804.2265
2008
PERELMAN'S PROOF OF THE POINCAR´ E CONJECTURE: A NONLINEAR PDE PERSPECTIVE
math/0610903
2006
Einstein flow with matter sources: stability and convergence
Philosophical Transactions of the Royal Society A
2021
Creating Designs through Mathematical Functions
2015
Geometrization of three manifolds and Perelman’s proof
2008
Classical and quantum geometric information flows and entanglement of relativistic mechanical systems
Quantum Information Processing
2019
The geometry and topology of Coxeter groups
2008
Notes on Perelman's papers
2006
Area and boundary length of surfaces diffeomorphic to annuli
2021
Ricci Flow and the Poincaré Conjecture
2007