相关论文

Auditory Expectation: The Information Dynamics of Music Perception and Cognition

Abstract:Following in a psychological and musicological tradition beginning with Leonard Meyer, and continuing through David Huron, we present a functional, cognitive account of the phenomenon of expectation in music, grounded in computational, probabilistic modeling. We summarize a range of evidence for this approach, from psychology, neuroscience, musicology, linguistics, and creativity studies, and argue that simulating expectation is an important part of understanding a broad range of human faculties, in music and beyond.

参考文献

[1]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[2]  J. Saffran,et al.  Absolute pitch in infant auditory learning: evidence for developmental reorganization. , 2001, Developmental psychology.

[3]  L. Cuddy,et al.  Responsiveness of Western adults to pitch-distributional information in melodic sequences , 1995, Psychological research.

[4]  L. Cuddy,et al.  Expectancies generated by melodic intervals: Evaluation of principles of melodic implication in a melody-completion task , 1997, Perception & psychophysics.

[5]  H. C. Longuet-Higgins Artificial intelligence — a new theroretical psychology? , 1981, Cognition.

[6]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[7]  A. Goldstein Thrills in response to music and other stimuli , 1980 .

[8]  S. Pinker The Language Instinct , 1994 .

[9]  Mark A. Schmuckler,et al.  The performance of global expectations. , 1990 .

[10]  Alan Smaill,et al.  Representing music for analysis and composition , 1990 .

[11]  Q. Summerfield Book Review: Auditory Scene Analysis: The Perceptual Organization of Sound , 1992 .

[12]  Information as a measure of the experience of music , 1959 .

[13]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[14]  N. Foo Conceptual Spaces—The Geometry of Thought , 2022 .

[15]  R. Knight,et al.  A Generalized Mechanism for Perception of Pitch Patterns , 2009, The Journal of Neuroscience.

[16]  Elizabeth K. Johnson,et al.  Statistical learning of tone sequences by human infants and adults , 1999, Cognition.

[17]  M. Schmuckler Expectation in music: Investigation of melodic and harmonic processes. , 1989 .

[18]  Barbara Tillmann,et al.  Effects of Global and Local Contexts on Harmonic Expectancy , 1998 .

[19]  L. Knopoff,et al.  Entropy as a Measure of Style: The Influence of Sample Length , 1983 .

[20]  Geraint A. Wiggins,et al.  Development of Techniques for the Computational Modelling of Harmony , 2010, ICCC.

[21]  M. Schmuckler Expectancy effects in memory for melodies. , 1997, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[22]  J. Bharucha Music Cognition and Perceptual Facilitation: A Connectionist Framework , 1987 .

[23]  Geraint A. Wiggins,et al.  Evaluating Cognitive Models of Musical Composition , 2007 .

[24]  Refractor Vision , 2000, The Lancet.

[25]  Geraint A. Wiggins,et al.  Melodic Grouping in Music Information Retrieval: New Methods and Applications , 2010, Advances in Music Information Retrieval.

[26]  J. L. Snyder Entropy as a Measure of Musical Style: The Influence of A Priori Assumptions , 1990 .

[27]  Mark D. Plumbley,et al.  Information dynamics: patterns of expectation and surprise in the perception of music , 2009, Connect. Sci..

[28]  鐘期 坂本,et al.  Tonal Pitch Space を用いた楽曲の和声解析 , 2009 .

[29]  Leonard B. Meyer Meaning in music and information theory. , 1957 .

[30]  J. Sloboda Music Structure and Emotional Response: Some Empirical Findings , 1991 .

[31]  John G. Cleary,et al.  Unbounded length contexts for PPM , 1995, Proceedings DCC '95 Data Compression Conference.

[32]  R. Zatorre,et al.  Anatomically distinct dopamine release during anticipation and experience of peak emotion to music , 2011, Nature Neuroscience.

[33]  Schellenberg Eg Expectancy in melody: tests of the implication-realization model , 1996 .

[34]  Peter Desain,et al.  Quantization of musical time: a connectionist approach , 1989 .

[35]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[36]  Reinhard Kopiez,et al.  The Chill Parameter: Goose Bumps and Shivers as Promising Measures in Emotion Research , 2009 .

[37]  George Frederick McKay Experimental Music , 1959 .

[38]  Bret Aarden Dynamic melodic expectancy , 2003 .

[39]  Lloyd A. Smith,et al.  A computer model of blues music and its evaluation , 1996 .

[40]  Joel E. Cohen,et al.  Information theory and music , 2007 .

[41]  Geraint A. Wiggins,et al.  A preliminary framework for description, analysis and comparison of creative systems , 2006, Knowl. Based Syst..

[42]  S. Koelsch,et al.  Effects of Unexpected Chords and of Performer's Expression on Brain Responses and Electrodermal Activity , 2008, PloS one.

[43]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[44]  Geraint A. Wiggins ‘‘I let the music speak’’: Cross-domain application of a cognitive model of musical learning , 2011 .

[45]  Edward W. Large,et al.  A canonical model for gradient frequency neural networks , 2010 .

[46]  C. Bean Information Theory Analyses of Four Sonata Expositions , 1966 .

[47]  P. Laukka,et al.  Expression, Perception, and Induction of Musical Emotions: A Review and a Questionnaire Study of Everyday Listening , 2004 .

[48]  THE THEORY OF STOCHASTIC PROCESSES AND DYNAMICAL SYSTEMS AS A BASIS FOR MODELS OF MUSICAL STRUCTURES , 1984 .

[49]  Emilios Cambouropoulos,et al.  The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing , 2001, ICMC.

[50]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[51]  C. Krumhansl,et al.  Tonal hierarchies in the music of north India. , 1984, Journal of experimental psychology. General.

[52]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[53]  Charles Ames,et al.  The Markov Process as a Compositional Model: A Survey and Tutorial , 2017 .

[54]  Darrell Conklin,et al.  Music Generation from Statistical Models , 2003 .

[55]  Michael R. Brent,et al.  An Efficient, Probabilistically Sound Algorithm for Segmentation and Word Discovery , 1999, Machine Learning.

[56]  E. Large,et al.  The dynamics of attending: How people track time-varying events. , 1999 .

[57]  Wayne D. Gray,et al.  Topics in Cognitive Science , 2009 .

[58]  Geraint A. Wiggins Computer models of (music) cognition , 2011 .

[59]  S. Kirby Language and Music as Cognitive Systems , 2011 .

[60]  James F. Glazebrook Embodiment and the inner life: Cognition and consciousness in the space of possible minds, M. Shanahan. Oxford University Press (2010) , 2014, Cogn. Syst. Res..

[61]  María Herrojo Ruiz,et al.  Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation , 2010, NeuroImage.

[62]  T. Eerola Data-driven influences on melodic expectancy : Continuations in North Sami yoiks rated by South African traditional healers , 2004 .

[63]  E. Schellenberg,et al.  Simplifying the Implication-Realization Model of Melodic Expectancy , 1997 .

[64]  Eugene Narmour,et al.  The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model , 1990 .

[65]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[66]  J. Youngblood Style as Information , 1958 .

[67]  R. Kopiez,et al.  Listening To Music As A Re-Creative Process: Physiological, Psychological, And Psychoacoustical Correlates Of Chills And Strong Emotions , 2007 .

[68]  E. Narmour The Analysis and Cognition of Melodic Complexity: The Implication-Realization Model , 1992 .

[69]  Robert O. Gjerdingen,et al.  The Cognition of Basic Musical Structures , 2004 .

[70]  M. Brent Speech segmentation and word discovery: a computational perspective , 1999, Trends in Cognitive Sciences.

[71]  Margaret A. Boden,et al.  The Creative Mind - Myths and Mechanisms (2. ed.) , 2003 .

[72]  G. Ritchie The Linguistic Analysis of Jokes , 2003 .

[73]  G. N. Cantor,et al.  Children's "like-dislike" ratings of familiarized and nonfamiliarized visual stimuli. , 1968 .

[74]  Michael C. Mozer,et al.  Neural Network Music Composition by Prediction: Exploring the Benefits of Psychoacoustic Constraints and Multi-scale Processing , 1994, Connect. Sci..

[75]  W. Fitch The biology and evolution of music: A comparative perspective , 2006, Cognition.

[76]  J. Panksepp The emotional sources of "chills" induced by music. , 1995 .

[77]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[78]  E. Schellenberg,et al.  Expectancy in melody: tests of the implication-realization model , 1996, Cognition.

[79]  S Hancocks,et al.  I go to a friend , 2001, British dental journal.

[80]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[81]  Ramon Fuller Structure and Information in Webern's Symphonie, Op. 21 , 1967 .

[82]  Richard C. Pinkerton Information theory and melody. , 1956 .

[83]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search (1976) , 1989 .

[84]  C. Krumhansl,et al.  Measuring and Modeling Real-Time Responses to Music: The Dynamics of Tonality Induction , 2003, Perception.

[85]  J. Pind The Discovery of Spoken Language, Peter W. Jusczyk (Ed.). MIT Press (1997), ISBN 0 262 10058 4 , 1997 .

[86]  W. Dowling Emotion and Meaning in Music , 2008 .

[87]  Geraint A. Wiggins,et al.  EXPECTATION IN MELODY: THE INFLUENCE OF CONTEXT AND LEARNING , 2006 .

[88]  Geraint A. Wiggins Searching for computational creativity , 2006, New Generation Computing.

[89]  Timothy F. Brady,et al.  Spontaneous Motor Entrainment to Music in Multiple Vocal Mimicking Species , 2009, Current Biology.

[90]  M. R. Jones,et al.  Dynamic attending and responses to time. , 1989, Psychological review.

[91]  M. Boden The creative mind : myths & mechanisms , 1991 .

[92]  D. Västfjäll,et al.  Emotional responses to music: the need to consider underlying mechanisms. , 2008, The Behavioral and brain sciences.

[93]  Chris Mellish,et al.  Statistical Learning of Harmonic Movement , 1999 .

[94]  M. Hauser,et al.  Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins , 2001, Cognition.

[95]  Stefan Koelsch,et al.  Differences in Electric Brain Responses to Melodies and Chords , 2010, Journal of Cognitive Neuroscience.

[96]  M. R. Jones Dynamic pattern structure in music: Recent theory and research , 1987, Perception & psychophysics.

[97]  Ian H. Witten,et al.  PREDICTION AND ENTROPY OF MUSIC , 1990 .

[98]  Rocky Ross,et al.  Mental models , 2004, SIGA.

[99]  Barbara Tillmann,et al.  Music and Language Perception: Expectations, Structural Integration, and Cognitive Sequencing , 2012, Top. Cogn. Sci..

[100]  Ran El-Yaniv,et al.  Universal Classification Applied to Musical Sequences , 1998, ICMC.

[101]  W. R. Garner Applications of Information Theory to Psychology , 1959 .

[102]  Adrian C. North,et al.  Subjective complexity, familiarity, and liking for popular music. , 1995 .

[103]  I. Cross Music and cognitive evolution , 2007 .

[104]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[105]  C. Stevens,et al.  Sweet Anticipation: Music and the Psychology of Expectation, by David Huron . Cambridge, Massachusetts: MIT Press, 2006 , 2007 .

[106]  Murray Shanahan,et al.  Embodiment and the inner lifeCognition and Consciousness in the Space of Possible Minds , 2010 .

[107]  Mayumi Adachi,et al.  Expectancy in melody: tests of children and adults. , 2002, Journal of experimental psychology. General.

[108]  R. Shepard,et al.  Tonal Schemata in the Perception of Music in Bali and in the West , 1984 .

[109]  R N Aslin,et al.  Statistical Learning by 8-Month-Old Infants , 1996, Science.

[110]  D. D. Greenwood Comparing octaves, frequency ranges, and cochlear-map curvature across species , 1996, Hearing Research.

[111]  D. Levitin Absolute memory for musical pitch: Evidence from the production of learned melodies , 1994, Perception & psychophysics.

[112]  Seung-Goo Kim,et al.  The Effect of Conditional Probability of Chord Progression on Brain Response: An MEG Study , 2011, PloS one.

[113]  Dana Ron,et al.  The power of amnesia: Learning probabilistic automata with variable memory length , 1996, Machine Learning.

[114]  Frederick P. Brooks,et al.  An experiment in musical composition , 1957, IRE Trans. Electron. Comput..

[115]  Don D. Coffman Measuring Musical Originality Using Information Theory , 1992 .

[116]  Aniruddh D. Patel,et al.  Experimental Evidence for Synchronization to a Musical Beat in a Nonhuman Animal , 2009, Current Biology.

[117]  D. Berlyne Studies in the New Experimental Aesthetics: Steps Toward an Objective Psychology of Aesthetic Appreciation, , 1974 .

[118]  Stefan Koelsch,et al.  The Role of Harmonic Expectancy Violations in Musical Emotions: Evidence from Subjective, Physiological, and Neural Responses , 2006, Journal of Cognitive Neuroscience.

[119]  L. Cuddy,et al.  Expectancies generated by melodic intervals: Perceptual judgments of melodic continuity , 1995, Perception & psychophysics.

[120]  Barbara Tillmann,et al.  Implicit learning of tonality: A self-organizing approach , 2000 .

[121]  Josh H. McDermott,et al.  THE ORIGINS OF MUSIC: INNATENESS, UNIQUENESS, AND EVOLUTION , 2005 .

[122]  William Hutchinson,et al.  Information Theory for Musical Continua , 1981 .

[123]  Jeffrey M. Zacks,et al.  Segmentation in the perception and memory of events , 2008, Trends in Cognitive Sciences.

[124]  Michael T. Ullman,et al.  Double dissociation between rules and memory in music: An event-related potential study , 2007, NeuroImage.

[125]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[126]  Paul R. Cohen,et al.  Voting experts: An unsupervised algorithm for segmenting sequences , 2007, Intell. Data Anal..

[127]  C. Summerfield,et al.  Expectation (and attention) in visual cognition , 2009, Trends in Cognitive Sciences.

[128]  N. Chater,et al.  Bootstrapping Word Boundaries: A Bottom-up Corpus-Based Approach to Speech Segmentation , 1997, Cognitive Psychology.

[129]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[130]  S. Chipman The Remembered Present: A Biological Theory of Consciousness , 1990, Journal of Cognitive Neuroscience.

[131]  A. Unyk,et al.  The influence of expectancy on melodic perception , 1987 .

[132]  J. Hutsler,et al.  FUNDAMENTAL ISSUES IN THE EVOLUTIONARY PSYCHOLOGY OF MUSIC: Assessing Innateness and Domain Specificity , 2005 .

[133]  Geraint A. Wiggins,et al.  The Role of Expectation and Probabilistic Learning in Auditory Boundary Perception: A Model Comparison , 2010, Perception.

[134]  R. Zajonc Attitudinal effects of mere exposure. , 1968 .

[135]  Hc Plotkin,et al.  Evolution in Mind , 1997 .

[136]  S. Baron,et al.  Origins of music , 2011 .

[137]  James C. Carlsen Some factors which influence melodic expectancy , 1981 .

[138]  R. Zatorre,et al.  Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[139]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[140]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[141]  Suzanne Bunton,et al.  Semantically Motivated Improvements for PPM Variants , 1997, Comput. J..

[142]  Charles Ames,et al.  Automated Composition in Retrospect: 1956–1986 , 2017 .

[143]  Edward A. Vessel,et al.  Perceptual Pleasure and the Brain , 2006 .

[144]  C. Krumhansl,et al.  Cross-cultural music cognition: cognitive methodology applied to North Sami yoiks , 2000, Cognition.

[145]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[146]  Peter M. Todd,et al.  The Quantization of Musical Time: A Connectionist Approach , 2003 .

[147]  C. Krumhansl,et al.  Melodic Expectation in Finnish Spiritual Folk Hymns: Convergence of Statistical, Behavioral, and Computational Approaches , 1999 .

[148]  J. Elman,et al.  Rethinking Innateness: A Connectionist Perspective on Development , 1996 .

[149]  E. Schellenberg,et al.  Good Pitch Memory Is Widespread , 2003, Psychological science.

[150]  Jeffrey M. Zacks,et al.  A Computational Model of Event Segmentation From Perceptual Prediction , 2007, Cogn. Sci..

[151]  Geraint A. Wiggins,et al.  Methods for Combining Statistical Models of Music , 2004, CMMR.

[152]  Edgar Coons,et al.  Information as a Measure of Structure in Music , 1958 .

[153]  Geraint A. Wiggins,et al.  Towards Greater Objectivity in Music Theory: Information-Dynamic Analysis of Minimalist Music , 2007 .

[154]  Mark L. James,et al.  On the Entropy of Music: An Experiment with Bach Chorale Melodies , 1992 .

[155]  Geraint A. Wiggins,et al.  Improved Methods for Statistical Modelling of Monophonic Music , 2004 .

[156]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[157]  G. Miller The cognitive revolution: a historical perspective , 2003, Trends in Cognitive Sciences.

引用
Music Cognition and the Cognitive Sciences
Top. Cogn. Sci.
2012
The averaged inter-brain coherence between the audience and a violinist predicts the popularity of violin performance
NeuroImage
2020
Defining Inspiration? Modelling non-conscious creative process
2011
IDyOT: A Computational Theory of Creativity as Everyday Reasoning from Learned Information
2015
Cross Entropy as a Measure of Musical Contrast
MCM
2015
Algorithmically-generated Corpora that use Serial Compositional Principles Can Contribute to the Modeling of Sequential Pitch Structure in Non-tonal Music
2016
Imposing higher-level Structure in Polyphonic Music Generation using Convolutional Restricted Boltzmann Machines and Constraints
ArXiv
2016
From context to concept: exploring semantic relationships in music with word2vec
Neural Computing and Applications
2018
Linking Neural and Symbolic Representation and Processing of Conceptual Structures
Front. Psychol.
2017
Two Challenges in Cognitive Musicology
Top. Cogn. Sci.
2012
Parameter Search for Aesthetic Design and Composition
2016
Creativity, exploration and control in musical parameter spaces
2016
Getting Closer to the Essence of Music
ACM Trans. Intell. Syst. Technol.
2016
Implications from Music Generation for Music Appreciation
ICCC
2013
Creativity, information, and consciousness: The information dynamics of thinking.
Physics of life reviews
2020
Identifying Cover Songs Using Information-Theoretic Measures of Similarity
IEEE/ACM Transactions on Audio, Speech, and Language Processing
2014
Music‐evoked emotions: principles, brain correlates, and implications for therapy
Annals of the New York Academy of Sciences
2015
Machine listening intelligence
ArXiv
2017
Music Analysis by Computer: Ontology and Epistemology
Computational Music Analysis
2016
Schematic Processing as a Framework for Learning and Creativity in CBR and CC
ICCBR
2015