相关论文

The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction

Abstract:The main objective of statistics of extremes is the prediction of rare events, and its primary problem has been the estimation of the tail index γ, usually performed on the basis of the largest k order statistics in the sample or on the excesses over a high level u. The question that has been often addressed in practical applications of extreme value theory is the choice of either k or u, and an adaptive estimation of γ. We shall be here mainly interested in the use of the bootstrap methodology to estimate γ adaptively, and although the methods provided may be applied, with adequate modifications, to the general domain of attraction of Gγ, γ ∈ ℝ, we shall here illustrate the methods for heavy right tails, i.e. for γ > 0. Special relevance will be given to the use of an auxiliary statistic that is merely the difference of two estimators with the same functional form as the estimator under study, computed at two different levels. We shall also compare, through Monte Carlo simulation, these bootstrap methodologies with other data-driven choices of the optimal sample fraction available in the literature.

摘要:极值统计的主要目标是对罕见事件的预测,其主要问题是尾部指数γ的估计,该估计通常基于样本中最大的k阶统计量或高水平u上的过剩。在极值理论的实际应用中,经常解决的问题是k或u的选择,以及γ的自适应估计。在这里,我们将主要对使用Bootstrap方法自适应地估计γ感兴趣,尽管所提供的方法可以在适当修改的情况下应用于Gγ,γ∈ℝ的一般吸引域,但在这里,我们将说明用于重右尾的方法,即对于γ>0。将特别注意使用辅助统计量,该统计量仅仅是在两个不同水平上计算的两个估计值的函数形式与所研究的估计值相同的两个估计值的差。我们还将通过蒙特卡罗模拟将这些Bootstrap方法与文献中提供的其他数据驱动的最佳样本比例选择进行比较。

参考文献

[1]  Sidney I. Resnick,et al.  How to make a Hill Plot , 2000 .

[2]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[3]  Edgar Kaufmann,et al.  Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .

[4]  George S. Fishman,et al.  Solution of Large Networks by Matrix Methods , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Jan Beirlant,et al.  Excess functions and estimation of the extreme-value index , 1996 .

[6]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[7]  M. Gomes,et al.  Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .

[8]  Richard L. Smith Approximations in Extreme Value Theory. , 1987 .

[9]  E. Haeusler,et al.  On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .

[10]  A. Dekkers,et al.  Optimal choice of sample fraction in extreme-value estimation , 1993 .

[11]  Peter Hall,et al.  Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems , 1990 .

[12]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[13]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[14]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[15]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[16]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[17]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[18]  Charles M. Goldie,et al.  SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS , 1987 .

[19]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[20]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[21]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

引用
A Review of Extreme Value Threshold Estimation and Uncertainty Quantification
2012
IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION
2007
DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄
2005
Extreme Value Theory and Statistics of Univariate Extremes: A Review
2015
Simulation of the entire range of daily precipitation using a hybrid probability distribution
2012
Early Warning Systems for Currency Crises: A Multivariate Extreme Value Approach
2010
Comparison of Weibull tail-coefficient estimators
1104.0764
2011
Tail index estimation based on survey data
2015
Thresholding Events of Extreme in Simultaneous Monitoring of Multiple Risks
2009
A location-invariant probability weighted moment estimation of the Extreme Value Index
Int. J. Comput. Math.
2016
A Mean-of-Order-\(p\) Class of Value-at-Risk Estimators
2015
Threshold Selection in Extreme Value Analysis
2016
Return Period Evaluation of the Largest Possible Earthquake Magnitudes in Mainland China Based on Extreme Value Theory
Sensors
2021
A Method for Confidence Intervals of High Quantiles
Entropy
2021
A Heuristic Procedure to Estimate the Tail Index
2014 14th International Conference on Computational Science and Its Applications
2014
A simple generalisation of the Hill estimator
Comput. Stat. Data Anal.
2013
Extreme behaviour for bivariate elliptical distributions
2005
An Optimal Tail Selection in Risk Measurement
Risks
2021
A general model for fatigue damage due to any stress history
2008
Resampling-Based Methodologies in Statistics of Extremes: Environmental and Financial Applications
2015