The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction
Abstract:The main objective of statistics of extremes is the prediction of rare events, and its primary problem has been the estimation of the tail index γ, usually performed on the basis of the largest k order statistics in the sample or on the excesses over a high level u. The question that has been often addressed in practical applications of extreme value theory is the choice of either k or u, and an adaptive estimation of γ. We shall be here mainly interested in the use of the bootstrap methodology to estimate γ adaptively, and although the methods provided may be applied, with adequate modifications, to the general domain of attraction of Gγ, γ ∈ ℝ, we shall here illustrate the methods for heavy right tails, i.e. for γ > 0. Special relevance will be given to the use of an auxiliary statistic that is merely the difference of two estimators with the same functional form as the estimator under study, computed at two different levels. We shall also compare, through Monte Carlo simulation, these bootstrap methodologies with other data-driven choices of the optimal sample fraction available in the literature.
摘要:极值统计的主要目标是对罕见事件的预测,其主要问题是尾部指数γ的估计,该估计通常基于样本中最大的k阶统计量或高水平u上的过剩。在极值理论的实际应用中,经常解决的问题是k或u的选择,以及γ的自适应估计。在这里,我们将主要对使用Bootstrap方法自适应地估计γ感兴趣,尽管所提供的方法可以在适当修改的情况下应用于Gγ,γ∈ℝ的一般吸引域,但在这里,我们将说明用于重右尾的方法,即对于γ>0。将特别注意使用辅助统计量,该统计量仅仅是在两个不同水平上计算的两个估计值的函数形式与所研究的估计值相同的两个估计值的差。我们还将通过蒙特卡罗模拟将这些Bootstrap方法与文献中提供的其他数据驱动的最佳样本比例选择进行比较。
暂无分享,去 创建一个
[1] Sidney I. Resnick,et al. How to make a Hill Plot , 2000 .
[2] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[3] Edgar Kaufmann,et al. Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .
[4] George S. Fishman,et al. Solution of Large Networks by Matrix Methods , 1976, IEEE Transactions on Systems, Man, and Cybernetics.
[5] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[6] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[7] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[8] Richard L. Smith. Approximations in Extreme Value Theory. , 1987 .
[9] E. Haeusler,et al. On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .
[10] A. Dekkers,et al. Optimal choice of sample fraction in extreme-value estimation , 1993 .
[11] Peter Hall,et al. Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems , 1990 .
[12] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[13] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[14] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[15] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[16] Laurens de Haan,et al. On regular variation and its application to the weak convergence of sample extremes , 1973 .
[17] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[18] Charles M. Goldie,et al. SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS , 1987 .
[19] J. Teugels,et al. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .
[20] J. D. T. Oliveira,et al. The Asymptotic Theory of Extreme Order Statistics , 1979 .
[21] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .