Agricultural sustainability: concepts, principles and evidence
Concerns about sustainability in agricultural systems centre on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, are accessible to and effective for farmers, and lead to improvements in food productivity. Despite great progress in agricultural productivity in the past half-century, with crop and livestock productivity strongly driven by increased use of fertilizers, irrigation water, agricultural machinery, pesticides and land, it would be over-optimistic to assume that these relationships will remain linear in the future. New approaches are needed that will integrate biological and ecological processes into food production, minimize the use of those non-renewable inputs that cause harm to the environment or to the health of farmers and consumers, make productive use of the knowledge and skills of farmers, so substituting human capital for costly external inputs, and make productive use of people's collective capacities to work together to solve common agricultural and natural resource problems, such as for pest, watershed, irrigation, forest and credit management. These principles help to build important capital assets for agricultural systems: natural; social; human; physical; and financial capital. Improving natural capital is a central aim, and dividends can come from making the best use of the genotypes of crops and animals and the ecological conditions under which they are grown or raised. Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign. The ecological management of agroecosystems that addresses energy flows, nutrient cycling, population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a landscape scale. Sustainable agriculture outcomes can be positive for food productivity, reduced pesticide use and carbon balances. Significant challenges, however, remain to develop national and international policies to support the wider emergence of more sustainable forms of agricultural production across both industrialized and developing countries.
Is agricultural sustainability a useful concept
This paper examines conceptual and methodological barriers to using sustainability as a criterion for guiding change in agriculture and proposes elements necessary for approaches to characterizing sustainability to be generally useful. Two broad interpretations of agricultural sustainability have emerged with different underlying goals: sustainability interpreted as an approach to agriculture developed in response to concerns about impacts of agriculture, with motivating adherence to sustainable ideologies and practices as its goal; and sustainability interpreted as a property of agriculture developed in response to concerns about threats to agriculture, with the goal of using it as a criterion for guiding agriculture as it responds to change. Interpreting sustainability as an approach has been useful for motivating change. However, usefulness of this interpretation as a criterion for guiding change is hindered by a lack of generality of prescribed approaches, a distorted view of conventional agriculture and circular logic. Although interpreting sustainability as a system property is logically more consistent, conceptual and practical problems with its characterization have limited its usefulness as a criterion for guiding change. In order for sustainability to be a useful criterion for guiding change in agriculture, its characterization should be literal, system-oriented, quantiative, predictive, stochastic and diagnostic.
information system management system cloud computing decision making information technology world wide web life cycle hidden markov model markov model wide web world wide empirical study sustainable development literature review factors affecting life cycle assessment developing country web server parallel algorithm factors influencing cycle assessment electronic commerce technology acceptance model environmental management protein structure user authentication empirical investigation technology acceptance amino acid independent set cloud computing service integrated model protein sequence protein data bank corporate governance nucleic acid set problem sustainability assessment technology adoption environmental management system mobile commerce environmental sustainability internet banking life cycle costing fast parallel maximum independent set mobile banking electronic busines independent set problem maximum independent maximal independent set business network perceived risk cloud computing adoption maximal independent internet web computing adoption workload characterization adoption model sustainability indicator fast parallel algorithm target prediction sustainability issue life cycle sustainability performance outcome top management support adoption of mobile innovation adoption corporate sustainability system adoption information technology adoption adoption decision influencing the adoption cycle sustainability tam model weighted independent set technology adoption model adoption rate sustainability reporting set packing amino acid substitution adoption behavior weighted independent commerce adoption consumer adoption adoption of internet generalized hidden markov sustainability practice banking adoption weighted set subset problem acid substitution e-business adoption product adoption perceived behavioral control natural capital mirna target prediction electronic commerce adoption mobile banking adoption adoption research toe framework ecological sustainability agricultural sustainability independent sequence internet web server technology adoption research review [publication type] united state