DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series
Traditional distance and density-based anomaly detection techniques are unable to detect periodic and seasonality related point anomalies which occur commonly in streaming data, leaving a big gap in time series anomaly detection in the current era of the IoT. To address this problem, we present a novel deep learning-based anomaly detection approach (DeepAnT) for time series data, which is equally applicable to the non-streaming cases. DeepAnT is capable of detecting a wide range of anomalies, i.e., point anomalies, contextual anomalies, and discords in time series data. In contrast to the anomaly detection methods where anomalies are learned, DeepAnT uses unlabeled data to capture and learn the data distribution that is used to forecast the normal behavior of a time series. DeepAnT consists of two modules: time series predictor and anomaly detector. The time series predictor module uses deep convolutional neural network (CNN) to predict the next time stamp on the defined horizon. This module takes a window of time series (used as a context) and attempts to predict the next time stamp. The predicted value is then passed to the anomaly detector module, which is responsible for tagging the corresponding time stamp as normal or abnormal. DeepAnT can be trained even without removing the anomalies from the given data set. Generally, in deep learning-based approaches, a lot of data are required to train a model. Whereas in DeepAnT, a model can be trained on relatively small data set while achieving good generalization capabilities due to the effective parameter sharing of the CNN. As the anomaly detection in DeepAnT is unsupervised, it does not rely on anomaly labels at the time of model generation. Therefore, this approach can be directly applied to real-life scenarios where it is practically impossible to label a big stream of data coming from heterogeneous sensors comprising of both normal as well as anomalous points. We have performed a detailed evaluation of 15 algorithms on 10 anomaly detection benchmarks, which contain a total of 433 real and synthetic time series. Experiments show that DeepAnT outperforms the state-of-the-art anomaly detection methods in most of the cases, while performing on par with others.
Anomaly Detection and Characterization in Spatial Time Series Data: A Cluster-Centric Approach
Anomaly detection in spatial time series (spatiotemporal data) is a challenging problem with numerous potential applications. A comprehensive anomaly detection approach not only should be able to detect and identify the emerging anomalies but has to characterize the essence of these anomalies by visualizing the structures revealed within data in a way that is understandable to the end-user as well. In this paper, we consider fuzzy c-means (FCM) as a conceptual and algorithmic setting to deal with the problem of anomaly detection. Using a sliding window, the time series are divided into a number of subsequences, and the available spatiotemporal structure within each time window is discovered using the FCM method. In the sequel, an anomaly score is assigned to each cluster, and using a fuzzy relation formed between revealed structures, a propagation of anomalies occurring in consecutive time intervals is visualized. To illustrate the proposed method, several datasets (synthetic data, a simulated disease outbreak scenario, and Alberta temperature data) have been investigated.
neural network sensor network machine learning artificial neural network support vector machine deep learning time series data mining support vector vector machine wavelet transform data analysi deep neural network neural network model hidden markov model regression model deep neural anomaly detection gene expression data base generative adversarial network generative adversarial time series datum adversarial network experimental datum fourier series nearest neighbor support vector regression time series analysi missing datum data based moving average gene expression datum time series model series analysi lyapunov exponent series datum outlier detection dynamic time warping time series forecasting data mining algorithm panel datum time series prediction series model multivariate time series finite time unit root dynamic time linear and nonlinear series forecasting time warping distance measure financial time series series prediction integrated moving average experimental comparison multivariate time financial time dependent variable chaotic time series nonlinear time vegetation index nonlinear time series arima model fuzzy time large time anomaly detection method fuzzy time series chaotic time autoregressive integrated moving time series based air pollutant time series classification representation method fokker-planck equation series representation similarity analysi series classification univariate time series time series clustering unsupervised anomaly detection periodic pattern nearest neighbor classification time series dataset series data mining time series regression anomaly detection approach time series database series clustering observed time series forecasting time series local similarity long time series time series similarity series database fmri time series complex time indian stock market time series representation symbolic aggregate approximation complex time series forecasting time series data set series similarity fmri time time series anomaly large time series series data analysi series anomaly detection analyzing time series expression time series interrupted time series ucr time series time correction modeling time series clustering time series mining time series interrupted time series data based fourier series representation simple exponential smoothing early classification forecast time series time series subsequence sensor networks pose distributed index piecewise constant approximation quality time series mining time microarray time series incomplete time series massive time series large-scale time series analysing time series microarray time neural time series mri time neural time series data generated time series experiment visualizing time series called time series data set