今日推荐

2010 - Eng. Appl. Artif. Intell.

A hybrid neural network and ARIMA model for water quality time series prediction

Accurate predictions of time series data have motivated the researchers to develop innovative models for water resources management. Time series data often contain both linear and nonlinear patterns. Therefore, neither ARIMA nor neural networks can be adequate in modeling and predicting time series data. The ARIMA model cannot deal with nonlinear relationships while the neural network model alone is not able to handle both linear and nonlinear patterns equally well. In the present study, a hybrid ARIMA and neural network model is proposed that is capable of exploiting the strengths of traditional time series approaches and artificial neural networks. The proposed approach consists of an ARIMA methodology and feed-forward, backpropagation network structure with an optimized conjugated training algorithm. The hybrid approach for time series prediction is tested using 108-month observations of water quality data, including water temperature, boron and dissolved oxygen, during 1996-2004 at Buyuk Menderes river, Turkey. Specifically, the results from the hybrid model provide a robust modeling framework capable of capturing the nonlinear nature of the complex time series and thus producing more accurate predictions. The correlation coefficients between the hybrid model predicted values and observed data for boron, dissolved oxygen and water temperature are 0.902, 0.893, and 0.909, respectively, which are satisfactory in common model applications. Predicted water quality data from the hybrid model are compared with those from the ARIMA methodology and neural network architecture using the accuracy measures. Owing to its ability in recognizing time series patterns and nonlinear characteristics, the hybrid model provides much better accuracy over the ARIMA and neural network models for water quality predictions.

2018 - 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)

A Comparison of ARIMA and LSTM in Forecasting Time Series

Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In particular, ARIMA model has demonstrated its outperformance in precision and accuracy of predicting the next lags of time series. With the recent advancement in computational power of computers and more importantly development of more advanced machine learning algorithms and approaches such as deep learning, new algorithms are developed to analyze and forecast time series data. The research question investigated in this article is that whether and how the newly developed deep learning-based algorithms for forecasting time series data, such as "Long Short-Term Memory (LSTM)", are superior to the traditional algorithms. The empirical studies conducted and reported in this article show that deep learning-based algorithms such as LSTM outperform traditional-based algorithms such as ARIMA model. More specifically, the average reduction in error rates obtained by LSTM was between 84 - 87 percent when compared to ARIMA indicating the superiority of LSTM to ARIMA. Furthermore, it was noticed that the number of training times, known as "epoch" in deep learning, had no effect on the performance of the trained forecast model and it exhibited a truly random behavior.

2018 - ArXiv

Forecasting Economics and Financial Time Series: ARIMA vs. LSTM

Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In particular, ARIMA model has demonstrated its outperformance in precision and accuracy of predicting the next lags of time series. With the recent advancement in computational power of computers and more importantly developing more advanced machine learning algorithms and approaches such as deep learning, new algorithms are developed to forecast time series data. The research question investigated in this article is that whether and how the newly developed deep learning-based algorithms for forecasting time series data, such as "Long Short-Term Memory (LSTM)", are superior to the traditional algorithms. The empirical studies conducted and reported in this article show that deep learning-based algorithms such as LSTM outperform traditional-based algorithms such as ARIMA model. More specifically, the average reduction in error rates obtained by LSTM is between 84 - 87 percent when compared to ARIMA indicating the superiority of LSTM to ARIMA. Furthermore, it was noticed that the number of training times, known as "epoch" in deep learning, has no effect on the performance of the trained forecast model and it exhibits a truly random behavior.

2011

Selecting Wavelet Transforms Model in Forecasting Financial Time Series Data Based on ARIMA Model

Recently, wavelet transforms have gained very high attention in many fields and applications such as physics, engineering, signal processing, applied mathematics and statistics. In this paper, we present the advantage of wavelet transforms in forecasting financial time series data. Amman stock market (Jordan) was selected as a tool to show the ability of wavelet transform in forecasting financial time series, experimentally. This article suggests a novel technique for forecasting the financial time series data, based on Wavelet transforms and ARIMA model. Daily return data from 1993 until 2009 is used for this study.

论文关键词

neural network sensor network machine learning artificial neural network support vector machine deep learning time series data mining support vector vector machine wavelet transform data analysi deep neural network neural network model hidden markov model regression model deep neural anomaly detection gene expression data base generative adversarial network generative adversarial time series datum adversarial network experimental datum fourier series nearest neighbor support vector regression time series analysi missing datum data based moving average gene expression datum time series model series analysi lyapunov exponent series datum outlier detection dynamic time warping time series forecasting data mining algorithm panel datum time series prediction series model multivariate time series finite time unit root dynamic time linear and nonlinear series forecasting time warping distance measure financial time series series prediction integrated moving average experimental comparison multivariate time financial time dependent variable chaotic time series nonlinear time vegetation index nonlinear time series arima model fuzzy time large time anomaly detection method fuzzy time series chaotic time autoregressive integrated moving time series based air pollutant time series classification representation method fokker-planck equation series representation similarity analysi series classification univariate time series time series clustering unsupervised anomaly detection periodic pattern nearest neighbor classification time series dataset series data mining time series regression anomaly detection approach time series database series clustering observed time series forecasting time series local similarity long time series time series similarity series database fmri time series complex time indian stock market time series representation symbolic aggregate approximation complex time series forecasting time series data set series similarity fmri time time series anomaly large time series series data analysi series anomaly detection analyzing time series expression time series interrupted time series ucr time series time correction modeling time series clustering time series mining time series interrupted time series data based fourier series representation simple exponential smoothing early classification forecast time series time series subsequence sensor networks pose distributed index piecewise constant approximation quality time series mining time microarray time series incomplete time series massive time series large-scale time series analysing time series microarray time neural time series mri time neural time series data generated time series experiment visualizing time series called time series data set