今日推荐

2007 - IEEE Signal Processing Magazine

Nonnegative Matrix and Tensor Factorization T

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFs various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

2009

Nonnegative Matrix and Tensor Factorizations - Applications to Exploratory Multi-way Data Analysis and Blind Source Separation

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFs various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

2016 - IEEE/ACM Transactions on Audio, Speech, and Language Processing

Determined Blind Source Separation Unifying Independent Vector Analysis and Nonnegative Matrix Factorization

This paper addresses the determined blind source separation problem and proposes a new effective method unifying independent vector analysis (IVA) and nonnegative matrix factorization (NMF). IVA is a state-of-the-art technique that utilizes the statistical independence between sources in a mixture signal, and an efficient optimization scheme has been proposed for IVA. However, since the source model in IVA is based on a spherical multivariate distribution, IVA cannot utilize specific spectral structures such as the harmonic structures of pitched instrumental sounds. To solve this problem, we introduce NMF decomposition as the source model in IVA to capture the spectral structures. The formulation of the proposed method is derived from conventional multichannel NMF (MNMF), which reveals the relationship between MNMF and IVA. The proposed method can be optimized by the update rules of IVA and single-channel NMF. Experimental results show the efficacy of the proposed method compared with IVA and MNMF in terms of separation accuracy and convergence speed.

论文关键词

neural network power system internet of things electric vehicle data analysi renewable energy smart grid learning algorithm power grid image compression hyperspectral image matrix factorization source separation cyber-physical system energy management system sparse representation deep convolutional cloud storage blind source separation demand response blind source gradient method renewable energy system grid system dictionary learning hyperspectral datum latent semantic spectral clustering nonnegative matrix nonnegative matrix factorization hyperspectral imagery low rank image representation image inpainting public cloud matrix completion spectral datum smart grid system smart grid technology remote datum smart grid communication tensor factorization data matrix latent factor future smart grid factorization method spectral unmixing grid communication hyperspectral unmixing international system future smart smart power grid nonnegative matrice power grid system dictionary learning algorithm matrix factorization method data possession projected gradient graph regularized factorization based nonnegative tensor provable data possession system of units image inpainting method smart grid security provable datum public cloud storage matrix factorization technique projected gradient method factorization technique nonnegative tensor factorization nmf algorithm low-rank matrix factorization exemplar-based image inpainting image inpainting technique emerging smart grid matrix factorization problem multiplicative update based image inpainting regularized nonnegative matrix constrained nonnegative matrix sparse nonnegative kernel k-means clustering regularized nonnegative sparse nonnegative matrix matrix and tensor sparse nmf constrained nonnegative high-dimensional vector nmf method orthogonal nonnegative matrix graph regularized nonnegative nonnegative datum multi-way datum nonnegative tucker decomposition lee and seung weighted nonnegative matrix weighted nonnegative robust nonnegative matrix projective nonnegative matrix als algorithm robust nonnegative input data matrix projective nonnegative semantic image inpainting fast nonnegative wind power