An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays
Since their introduction by Kocher in 1998, power analysis attacks have attracted significant attention within the cryptographic community. While early works in the field mainly threatened the security of smart cards and simple processors, several recent publications have shown the vulnerability of hardware implementations as well. In particular, field programmable gate arrays are attractive options for hardware implementation of encryption algorithms,but their security against power analysis is a serious concern, as we discuss in this paper. For this purpose, we present recent results of attacks attempted against standard encryption algorithms, provide a theoretical estimation of these attacks based on simple statistical parameters and evaluate the cost and security of different possible countermeasures.
Power Analysis of an FPGA: Implementation of Rijndael: Is Pipelining a DPA Countermeasure?
Since their publication in 1998, power analysis attacks have attracted significant attention within the cryptographic community. So far, they have been successfully applied to different kinds of (unprotected) implementations of symmetric and public-key encryption schemes. However, most published attacks apply to smart cards and only a few publications assess the vulnerability of hardware implementations. In this paper we investigate the vulnerability of Rijndael FPGA (Field Programmable Gate Array) implementations to power analysis attacks. The design used to carry out the experiments is an optimized architecture with high clock frequencies, presented at CHES 2003. First, we provide a clear discussion of the hypothesis used to mount the attack. Then, we propose theoretical predictions of the attacks that we confirmed experimentally, which are the first successful experiments against an FPCA implementation of Rijndael. In addition, we evaluate the effect of pipelining and unrolling techniques in terms of resistance against power analysis. We also emphasize how the efficiency of the attack significantly depends on the knowledge of the design.
Differential Power Analysis Attack on SIMON and LED Block Ciphers
Power analysis attack is one of the most important and effective side channel attack methods, that has been attempted against implementations of cryptographic algorithms. In this paper, we investigate the vulnerability of SIMON [5] and LED [16] lightweight block ciphers against Differential Power Analysis (DPA) attack. Firstly, we describe the power model used to mount the attack on Field Programmable Gate Array (FPGA) implementation of SIMON and LED block ciphers. Then, we proceed to experimentally verified DPA attack, which is the first successful DPA attack on the algorithms. Our attack retrieves complete 64-bit key of SIMON32/64 and LED-64 with a complexity of 176 and 218 hypotheses respectively. Finally, we present our analysis on other versions of SIMON and LED. Our DPA results exhibits the weakness of algorithms, which emphasize the need for secure implementation of SIMON and LED.
genetic algorithm data mining big datum power consumption data structure association rule data stream programmable gate array field programmable gate elliptic curve data mining technique efficient algorithm smart card fpga implementation association rule mining mining algorithm power analysi frequent itemset hyperspectral datum sliding window frequent pattern leaf area apriori algorithm mining association rule leaf area index side channel uncertain datum differentially private leakage power algorithmic approach mining association elliptic curve cryptosystem mining frequent itemset mining curve cryptosystem frequent itemset mining plant leaf power analysis attack differential power analysi item set data mining task data stream mining frequent item analysis attack differential power high utility stream mining mining frequent itemset chlorophyll content maximal frequent mining frequent pattern false negative data mining problem high utility itemset frequent closed frequent itemsets mining utility itemset association mining closed itemset chlorophyll fluorescence itemsets mining transactional datum efficient mining correlation power analysi side channel analysi dpa attack maximal frequent itemset frequent closed itemset mining problem mining maximal frequent mining data stream closed frequent mining maximal itemset mining algorithm simple power analysi mining frequent closed leaf chlorophyll content memory consumption leaf chlorophyll finding frequent closed frequent itemset maximum frequent discovering frequent koblitz curve weighted frequent mining closed estimating leaf vegetative growth cryptographic circuit fast mining airborne spectrographic imager chlorophyll meter compact airborne spectrographic finding frequent itemset mining closed frequent top-k frequent estimation of leaf leakage power analysi discovering frequent itemset transactional data stream parallel frequent weighted frequent itemset prosail model discovery of association approximate frequent mining top-k frequent parallel frequent itemset itemset mining problem probabilistic frequent itemset number of transactions frequent itemsets algorithm find frequent itemset