今日推荐

2006 - Magnetic Resonance in Medicine

High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo

Comprehensive and quantitative measurements of T1 and T2 relaxation times of water, metabolites, and macromolecules in rat brain under similar experimental conditions at three high magnetic field strengths (4.0 T, 9.4 T, and 11.7 T) are presented. Water relaxation showed a highly significant increase (T1) and decrease (T2) with increasing field strength for all nine analyzed brain structures. Similar but less pronounced effects were observed for all metabolites. Macromolecules displayed field‐independent T2 relaxation and a strong increase of T1 with field strength. Among other features, these data show that while spectral resolution continues to increase with field strength, the absolute signal‐to‐noise ratio (SNR) in T1/T2‐based anatomical MRI quickly levels off beyond ∼7 T and may actually decrease at higher magnetic fields. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.

2008 - Magnetic Resonance in Medicine

Susceptibility weighted imaging at ultra high magnetic field strengths: Theoretical considerations and experimental results

We present numerical simulations and experimental results for susceptibility weighted imaging (SWI) at 7 T. Magnitude, phase, and SWI contrast were simulated for different voxel geometries and imaging parameters, resulting in an echo time of 14 msec for optimum contrast between veins and surrounding tissue. Slice thickness of twice the in‐plane voxel size or more resulted in optimum vessel visibility. Phantom and in vivo data are in very good agreement with the simulations and the delineation of vessels at 7 T was superior compared to lower field strengths. The phase of the complex data reveals anatomical details that are complementary to the corresponding magnitude images. Susceptibility weighted imaging at very high field strengths is a promising technique because of its high sensitivity to tissue susceptibility, its low specific absorption rate, and the phase's negligible sensitivity to B1 inhomogeneities. Magn Reson Med 60:1155–1168, 2008. © Wiley‐Liss, Inc.