今日推荐

2002 - Annual review of immunology

Molecular mechanism of class switch recombination: linkage with somatic hypermutation.

Class switch recombination (CSR) and somatic hypermutation (SHM) have been considered to be mediated by different molecular mechanisms because both target DNAs and DNA modification products are quite distinct. However, involvement of activation-induced cytidine deaminase (AID) in both CSR and SHM has revealed that the two genetic alteration mechanisms are surprisingly similar. Accumulating data led us to propose the following scenario: AID is likely to be an RNA editing enzyme that modifies an unknown pre-mRNA to generate mRNA encoding a nicking endonuclease specific to the stem-loop structure. Transcription of the S and V regions, which contain palindromic sequences, leads to transient denaturation, forming the stem-loop structure that is cleaved by the AID-regulated endonuclease. Cleaved single-strand tails will be processed by error-prone DNA polymerase-mediated gap-filling or exonuclease-mediated resection. Mismatched bases will be corrected or fixed by mismatch repair enzymes. CSR ends are then ligated by the NHEJ system while SHM nicks are repaired by another ligation system.

1998 - The EMBO journal

Ku80 is required for immunoglobulin isotype switching

Isotype switching is the DNA recombination mechanism by which antibody genes diversify immunoglobulin effector functions. In contrast to V(D)J recombination, which is mediated by RAG1, RAG2 and DNA double‐stranded break (DSB) repair proteins, little is known about the mechanism of switching. We have investigated the role of DNA DSB repair in switch recombination in mice that are unable to repair DSBs due to a deficiency in Ku80 (Ku80−/−). B‐cell development is arrested at the pro‐B cell stage in Ku80−/− mice because of abnormalities in V(D)J recombination, and there are no mature B cells. To reconstitute the B‐cell compartment in Ku80−/− mice, pre‐rearranged VB1−8 DJH2 (μi) and V3−83JK2 (κi) genes were introduced into the Ku80−/− background (Ku80−/−μi/+κi/+). Ku80−/−μi/+ κi/+ mice develop mature mIgM+ B cells that respond normally to lipopolysaccharide (LPS) or LPS plus interleukin‐4 (IL‐4) by producing specific germline Ig constant region transcripts and by forming switch region‐specific DSBs. However, Ku80−/−μi/+κi/+ B cells are unable to produce immunoglobulins of secondary isotypes, and fail to complete switch recombination. Thus, Ku80 is essential for switch recombination in vivo, suggesting a significant overlap between the molecular machinery that mediates DNA DSB repair, V(D)J recombination and isotype switching.

论文关键词

genetic algorithm positioning system process control sample size solar cell visible light dna sequence learning object indoor positioning received signal strength statistical process control indoor localization quantum dot statistical proces indoor positioning system count datum hecke algebra factorial design ieee standard binding site escherichia coli weighted moving average knowledge structure statistical quality control poisson structure cell cycle choice behavior econometric model quality level exponentially weighted moving fractional factorial design saccharomyces cerevisiae selection bia affine weyl group statistical process monitoring power conversion efficiency dye-sensitized solar cell charge transport uniform resource identifier learning object metadatum embryonic stem cell moving average control object class dye-sensitized solar reusable learning object linkage disequilibrium quantity discount spatial process spatial econometric population parameter embryonic stem reusable learning object metadatum heterojunction solar cell dna repair location fingerprinting cell development indoor positioning technique spatial econometric model radiation tolerance heterojunction solar genetic linkage signal peptide bulk heterojunction dna segment recombination rate bulk heterojunction solar dna recombination wifi-based indoor localization surface recombination escherichia coli. low-density lipoprotein indoor positioning solution proposed positioning system surface recombination velocity solar cells. neisseria meningitidi genetic heterogeneity learning object review dna break xrcc5 wt allele xrcc5 gene t cell receptor v(d)j recombination v(d)j recombination-activating protein 1 excretory function neuritis, autoimmune, experimental leukemia, b-cell dna sequence rearrangement immunoglobulin class switch recombination immunoglobulin class switching lipoprotein receptor dna breaks, double-stranded telomere maintenance v(d)j recombination genome encoded entity vdj recombinase recombination, genetic crossover (genetic algorithm) meiotic recombination homologous recombination