今日推荐

2018 - IEEE Transactions on Mobile Computing

Multi-Task Allocation in Mobile Crowd Sensing with Individual Task Quality Assurance

Task allocation is a fundamental research issue in mobile crowd sensing. While earlier research focused mainly on single tasks, recent studies have started to investigate multi-task allocation, which considers the interdependency among multiple tasks. A common drawback shared by existing multi-task allocation approaches is that, although the overall utility of multiple tasks is optimized, the sensing quality of individual tasks may become poor as the number of tasks increases. To overcome this drawback, we re-define the multi-task allocation problem by introducing task-specific minimal sensing quality thresholds, with the objective of assigning an appropriate set of tasks to each worker such that the overall system utility is maximized. Our new problem also takes into account the maximum number of tasks allowed for each worker and the sensor availability of each mobile device. To solve this newly-defined problem, this paper proposes a novel multi-task allocation framework named MTasker. Different from previous approaches which start with an empty set and iteratively select task-worker pairs, MTasker adopts a descent greedy approach, where a quasi-optimal allocation plan is evolved by removing a set of task-worker pairs from the full set. Extensive evaluations based on real-world mobility traces show that MTasker outperforms the baseline methods under various settings, and our theoretical analysis proves that MTasker has a good approximation bound.

2017 - Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing

PSAllocator: Multi-Task Allocation for Participatory Sensing with Sensing Capability Constraints

This paper proposes a novel multi-task allocation framework, named PSAllocator, for participatory sensing (PS). Different from previous single-task oriented approaches, which select an optimal set of users for each single task independently, PSAllocator attempts to coordinate the allocation of multiple tasks to maximize the overall system utility on a multi-task PS platform. Furthermore, PSAllocator takes the maximum number of sensing tasks allowed for each participant and the sensor availability of each mobile device into consideration. PSAllocator utilizes a two-phase offline multi-task allocation approach to achieve the near-optimal goal. First, it predicts the participants' connections to cell towers and locations based on historical data from the telecom operator; Then, it converts the multi-task allocation problem into the representation of a bipartite graph, and employs an iterative greedy process to optimize the task allocation. Extensive evaluations based on real-world mobility traces show that PSAllocator outperforms the baseline methods under various settings.

论文关键词

neural network differential equation deep learning convolutional neural network convolutional neural software development deep neural network feature selection open source deep neural optical network learning approach geographic information system distributed generation geographic information stochastic differential equation power allocation open source software stochastic differential deep convolutional neural source software deep convolutional named entity recognition loss function human action space telescope personal area network mental health feature learning wireless personal area elastic optical multi-task learning personal area elastic optical network network reconfiguration wireless personal learning problem hubble space telescope learning task software developer high rate water pressure hubble space doubly stochastic open source tool source software development free and open capacity allocation low rate source software project group lasso path protection sparse learning backup path rate wireles open source gi spare capacity optimal reconfiguration source gi multi-task deep backward doubly stochastic doubly stochastic differential backward doubly big bang-big crunch low rate wireles survivable routing multi-task deep learning guidance sensor bang-big crunch big bang-big multi-task learning approach source software tool deep multi-task deep multi-task learning pose-invariant face high water pressure fine guidance shared backup fine guidance sensor multi-task convolutional neural multi-task learning model source gis software shared backup path multi-task feature bang-big crunch algorithm backup path protection approximating optimal crunch algorithm multi-task learning method software movement multi-task network spare capacity allocation multi-task convolutional multi-task cnn multi-task sparse multi-task feature learning multi-task regression multi-task allocation feature learning algorithm multiple related task multi-task multi-view multi-task learning algorithm soils contaminated