今日推荐

2021 - Neural Information Processing Systems

Efficiently Identifying Task Groupings for Multi-Task Learning

Multi-task learning can leverage information learned by one task to benefit the training of other tasks. Despite this capacity, naively training all tasks together in one model often degrades performance, and exhaustively searching through combinations of task groupings can be prohibitively expensive. As a result, efficiently identifying the tasks that would benefit from training together remains a challenging design question without a clear solution. In this paper, we suggest an approach to select which tasks should train together in multi-task learning models. Our method determines task groupings in a single run by training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss. On the large-scale Taskonomy computer vision dataset, we find this method can decrease test loss by 10.0% compared to simply training all tasks together while operating 11.6 times faster than a state-of-the-art task grouping method.

2017 - ArXiv

A Novel Multi-task Deep Learning Model for Skin Lesion Segmentation and Classification

In this study, a multi-task deep neural network is proposed for skin lesion analysis. The proposed multi-task learning model solves different tasks (e.g., lesion segmentation and two independent binary lesion classifications) at the same time by exploiting commonalities and differences across tasks. This results in improved learning efficiency and potential prediction accuracy for the task-specific models, when compared to training the individual models separately. The proposed multi-task deep learning model is trained and evaluated on the dermoscopic image sets from the International Skin Imaging Collaboration (ISIC) 2017 Challenge - Skin Lesion Analysis towards Melanoma Detection, which consists of 2000 training samples and 150 evaluation samples. The experimental results show that the proposed multi-task deep learning model achieves promising performances on skin lesion segmentation and classification. The average value of Jaccard index for lesion segmentation is 0.724, while the average values of area under the receiver operating characteristic curve (AUC) on two individual lesion classifications are 0.880 and 0.972, respectively.

论文关键词

neural network differential equation deep learning convolutional neural network convolutional neural software development deep neural network feature selection open source deep neural optical network learning approach geographic information system distributed generation geographic information stochastic differential equation power allocation open source software stochastic differential deep convolutional neural source software deep convolutional named entity recognition loss function human action space telescope personal area network mental health feature learning wireless personal area elastic optical multi-task learning personal area elastic optical network network reconfiguration wireless personal learning problem hubble space telescope learning task software developer high rate water pressure hubble space doubly stochastic open source tool source software development free and open capacity allocation low rate source software project group lasso path protection sparse learning backup path rate wireles open source gi spare capacity optimal reconfiguration source gi multi-task deep backward doubly stochastic doubly stochastic differential backward doubly big bang-big crunch low rate wireles survivable routing multi-task deep learning guidance sensor bang-big crunch big bang-big multi-task learning approach source software tool deep multi-task deep multi-task learning pose-invariant face high water pressure fine guidance shared backup fine guidance sensor multi-task convolutional neural multi-task learning model source gis software shared backup path multi-task feature bang-big crunch algorithm backup path protection approximating optimal crunch algorithm multi-task learning method software movement multi-task network spare capacity allocation multi-task convolutional multi-task cnn multi-task sparse multi-task feature learning multi-task regression multi-task allocation feature learning algorithm multiple related task multi-task multi-view multi-task learning algorithm soils contaminated