今日推荐

2005 - FEMS microbiology reviews

Living in a fungal world: impact of fungi on soil bacterial niche development.

The colonization of land by plants appears to have coincided with the appearance of mycorrhiza-like fungi. Over evolutionary time, fungi have maintained their prominent role in the formation of mycorrhizal associations. In addition, however, they have been able to occupy other terrestrial niches of which the decomposition of recalcitrant organic matter is perhaps the most remarkable. This implies that, in contrast to that of aquatic organic matter decomposition, bacteria have not been able to monopolize decomposition processes in terrestrial ecosystems. The emergence of fungi in terrestrial ecosystems must have had a strong impact on the evolution of terrestrial bacteria. On the one hand, potential decomposition niches, e.g. lignin degradation, have been lost for bacteria, whereas on the other hand the presence of fungi has itself created new bacterial niches. Confrontation between bacteria and fungi is ongoing, and from studying contemporary interactions, we can learn about the impact that fungi presently have, and have had in the past, on the ecology and evolution of terrestrial bacteria. In the first part of this review, the focus is on niche differentiation between soil bacteria and fungi involved in the decomposition of plant-derived organic matter. Bacteria and fungi are seen to compete for simple plant-derived substrates and have developed antagonistic strategies. For more recalcitrant organic substrates, e.g. cellulose and lignin, both competitive and mutualistic strategies appear to have evolved. In the second part of the review, bacterial niches with respect to the utilization of fungal-derived substrates are considered. Here, several lines of development can be recognized, ranging from mutualistic exudate-consuming bacteria that are associated with fungal surfaces to endosymbiotic and mycophagous bacteria. In some cases, there are indications of fungal specific selection in fungus-associated bacteria, and possible mechanisms for such selection are discussed.

1988 - Nature

Major role of bacteria in biogeochemical fluxes in the ocean's interior

Spatial and temporal patterns in the flux of sinking organic matter are central to the understanding of elemental dynamics and food-web energetics in the global ocean1–3. Heterotrophic bacteria have been shown to play a part in the decomposition of large, rapidly sinking organic particles within and below the euphotic zone4–8. These previous studies suggest that decomposition by attached bacteria can explain only a trivial fraction of the observed decrease in the flux of organic matter with increasing depth. We report here that free-living bacteria, rather than the particle-feeding zooplankton, are the principal mediators of particle decomposition in the central north Pacific gyre and the eutrophic Santa Monica basin. We suggest that bacterial growth in the mesopelagial gives rise to the large-scale production of fine (0.3–0.6 μm), non-sinking particles at the expense of large, rapidly sinking particles. Our results have implications for models of biogeochemical dynamics of organic particles and surface-reactive materials such as radionu-clides in the ocean's interior3,9.

1991 - Limnology and Oceanography

The production of dissolved organic matter by phytoplankton and its importance to bacteria : patterns across marine and freshwater systems

We analyzed published rates of extracellular release (ER) of organic carbon to determine the primary constraints on this process and its importance to bacteria. From 16 studies we extracted observations of ER, particulate primary production (PP), and phytoplankton biomass. In a regression model based on 225 observations, PP explained 69% of the variance in ER. From this model we estimate the average percent extracellular release (PER) to be 13% of total fixation. The slope of this relationship does not support the hypothesis that the PER declines with increasing productivity. Differences exist between marine and freshwater systems. In lakes, ER increases nonlinearly with productivity, resulting in very low PER in very eutrophic systems. In coastal marine and estuarine systems, ER increases linearly with productivity and the PER does not vary systematically. ER is not primarily related to phytoplankton biomass as predicted by passive diffusion models. Instead, ER appears to be constrained by the total availability of photosynthates. By comparing our model to an existing model of bacterial production and assuming a 50% growth efficiency, we estimate that ER amounts to less than half the C required for bacterial growth in most pelagic systems.

论文关键词

cloud computing social network regression model gene expression sample size confidence interval logistic regression social science systematic review linear regression model cloud datum xml document immune system carbon dioxide amino acid logistic regression model keyword search mental model process analysi background and objective encrypted datum quantitative assessment plant growth escherichia coli sequence analysi discourse analysi scientific publication channel condition immune response choice behavior programming paradigm natural selection organic matter odds ratio social structure microbial community signal transduction membrane protein encrypted cloud datum encrypted cloud lactic acid plant root oral cavity quorum sensing gene transfer antibiotic resistance cardiac surgery critical discourse analysi dental cary cell count marine ecosystem recombinant dna oxidative stres critical discourse aquatic ecosystem horizontal gene transfer bibliographic reference ribosomal rna horizontal gene lactic acid bacterium plasma membrane acute kidney acute kidney injury resistance gene cell survival genetic selection acid bacterium physiological aspect gram-negative bacterium social characteristic social inequality ranked keyword search ranked keyword abbott laboratory dental plaque oligonucleotide probe base pairing resistant bacterium antibiotic resistance gene lactobacillus acidophilu gram-positive bacterium genetic heterogeneity biofilm development nitrogen cycle microbial biofilm transcription, genetic interface device component metabolic process, cellular national origin biological adaptation to stress clone cell ethanol 0.62 ml/ml topical gel clinical act of insertion genetic translation proces hereditary disease greater than cognition disorder phobia, social nucleic acid hybridization gel electrophoresis (lab technique) stimulation (motivation) meta analysis (statistical procedure) the superficial genome, bacterial amino acid metabolism, inborn error denial (psychology) immunoglobulin lambda-chain fifty nine reservoir device component document completion status - documented gastrointestinal tract structure genus (mathematics) domain of discourse phylum (taxon) intestinal microbiome microbiota (plant) genus mycobacterium antibiotic resistance, microbial ammonia measurement ammonia oxidation models, mental anabolic steroid actinobacteria clas fecal microbiota transplantation kidney failure, acute gene transfer, horizontal ferrosoferric oxide dennis fairclough ruth teitelbaum shoshana wodak excretory function entity name part qualifier - adopted cessation of life anatomical layer biopolymer sequencing ephrin type-b receptor 1, human one thousand copy (object) review [publication type] promotion (action) pathogenic organism