Living radical polymerization by the RAFT process
This paper presents a review of living radical polymerization achieved with thiocarbonylthio compounds [ZC(=S)SR] by a mechanism of reversible addition–fragmentation chain transfer (RAFT). Since we first introduced the technique in 1998, the number of papers and patents on the RAFT process has increased exponentially as the technique has proved to be one of the most versatile for the provision of polymers of well defined architecture. The factors influencing the effectiveness of RAFT agents and outcome of RAFT polymerization are detailed. With this insight, guidelines are presented on how to conduct RAFT and choose RAFT agents to achieve particular structures. A survey is provided of the current scope and applications of the RAFT process in the synthesis of well defined homo-, gradient, diblock, triblock, and star polymers, as well as more complex architectures including microgels and polymer brushes.
Living Radical Polymerization by the RAFT Process - A Second Update
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media
Reversible addition–fragmentation chain transfer (RAFT) radical polymerization has, since its discovery by CSIRO, evolved into an extremely powerful synthetic tool for polymer chemists. The versatility of RAFT, with respect to reaction conditions and monomer class, now facilitates the preparation of materials which, only 10 years ago, could not be prepared with well-defined molecular characteristics. One particularly advantageous feature of RAFT is its applicability to the synthesis of water-soluble (co)polymers both directly in aqueous media under homogeneous conditions as well as in organic media. The ease of access to an almost infinite number of RAFT mediating agents now affords the synthetic chemist the ability to polymerize virtually any activated, and some non-activated, water-soluble/hydrophilic monomers. We highlight herein the application of RAFT to the synthesis of water-soluble/dispersible (co)polymers under homogeneous reaction conditions in both aqueous and organic media. Additionally, we review the aqueous solution properties of advanced stimuli–responsive systems with a particular emphasis on the stimulus-induced, and often reversible, supramolecular self-assembly characteristics of the materials. Limitations of homogeneous aqueous RAFT are also highlighted.
Handbook of RAFT polymerization
Spanning the entire field from fundamentals to applications in material science, this one-stop source is the first comprehensive reference for polymer, physical and surface chemists, materials scientists, chemical engineers, and those chemists working in industry. From the contents: * Introduction: Living Free Radical Polymerization and the RAFT Process * Fundamental Structure-Reactivity Correlations Governing the RAFT Process * Mechanism and Kinetics * The RAFT Process as a Kinetic Tool * Theory and Practice in Technical Applications * RAFT Polymerization in Bulk and Organic Solvents, as well as Homogeneous Aqueous Systems * Emulsion and Mini-Emulsion Polymerization * Complex Architecture Design * Macromolecular Design via the Interchange of Xanthates * Surface Modification * Stability and Physical Properties of RAFT Polymers * Novel Materials: From Drug Delivery to Opto-Electronics * Outlook and Future Developments. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.
Living Radical Polymerization with Reversible Addition−Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents
Living radical polymerization with reversible addition−fragmentation chain transfer (RAFT polymerization) can be achieved with the use of dithiocarbamate derivatives that have the nonbonded electron pair of the nitrogen included as part of an aromatic system. These compounds have been shown to be highly effective in RAFT polymerization of styrene and (meth)acrylate esters to produce polymers of predetermined molecular weight and narrow polydispersity (usually <1.2). By contrast, simple N,N-dialkyl dithiocarbamates (those compounds previously described as “photoiniferters”) are ineffective as RAFT agents. The reasons for the different behavior are discussed.
time series recurrent neural network metric space health care discrete wavelet transform sample size confidence interval discrete fourier transform systematic review dimensionality reduction internet service euclidean distance traffic engineering internet service provider web search engine amino acid internet traffic intensive care unit time warping similarity search background and objective x-ray computed tomography heart failure traffic classification large time body mass index early diagnosi evaluation procedure dimensionality reduction technique growth factor internet routing kidney disease signal transduction symmetric encryption chronic kidney disease sequence database chronic kidney time series database today internet scaling behavior internet backbone searchable symmetric encryption cardiac surgery series database internet traffic classification searchable symmetric oxidative stres publication bia cell surface efficient similarity external validation large time series efficient similarity search time warping distance glomerular filtration rate effective sample size hospital admission fast similarity fast similarity search plasma membrane acute kidney injury acute kidney kidney injury internet traffic engineering approximate similarity search search in large dynamic searchable area under curve kidney transplantation today internet traffic sse scheme dynamic searchable symmetric radical polymerization abbott laboratory traffic classification technique renal replacement therapy cell physiology ckd patient wide-area internet internet traffic measurement improved definition fibroblast growth factor chain transfer biological marker fibroblast growth genetic heterogeneity lipid raft excretory function cns disorder entity name part qualifier - adopted cessation of life standards characteristic complement system protein one thousand hypertensive disease limited stage (cancer stage) tissue membrane glutathione s-transferase adverse reaction to drug diameter (qualifier value) congenital abnormality kidney failure, chronic renal insufficiency creatinine measurement, serum (procedure) forecast of outcome stage level 1 microgram per liter milliliter per minute diagnosis, clinical vesicle (morphologic abnormality) lipid metabolism disorder transplanted tissue membrane protein traffic stage level 3 cfh gene hemolytic-uremic syndrome kidney failure, acute blighia sapida creatinine clearance measurement cystatin c (substance) stage level 5