今日推荐

2022

Design Of Smart Power Grid Renewable Energy Systems

FOREWORD. PREFACE. ACKNOWLEDGMENTS. 1 ENERGY AND CIVILIZATION. 1.1 Introduction. 1.2 Fossil Fuel. 1.3 Depletion of Energy Resources. 1.4 An Alternative Energy Source: Nuclear Energy. 1.5 Global Warming. 1.6 The Age of the Electric Power System. 1.7 Green and Renewable Energy Sources. 1.8 Energy Units and Conversions. 1.9 Estimating the Cost of Energy. 1.10 Conclusion. 2 POWER GRIDS. 2.1 Introduction. 2.2 Electric Power Grids. 2.3 The Basic Concepts of Power Grids. 2.4 Load Models. 2.5 Transformers in Electric Power Grids. 2.6 Modeling a Microgrid System. 2.7 Modeling Three-Phase Transformers. 2.8 Tap Changing Transformers. 2.9 Modeling Transmission Lines. 3 MODELING CONVERTERS IN MICROGRID POWER SYSTEMS. 3.1 Introduction. 3.2 Single-Phase DC/AC Inverters with Two Switches. 3.3 Single-Phase DC/AC Inverters with a Four-Switch Bipolar Switching Method. 3.3.1 Pulse Width Modulation with Unipolar Voltage Switching for a Single-Phase Full-Bridge Inverter. 3.4 Three-Phase DC/AC Inverters. 3.5 Pulse Width Modulation Methods. 3.6 Analysis of DC/AC Three-Phase Inverters. 3.7 Microgrid of Renewable Energy Systems. 3.8 The DC/DC Converters in Green Energy Systems. 3.9 Rectifiers. 3.10 Pulse Width Modulation Rectifiers. 3.11 A Three-Phase Voltage Source Rectifier Utilizing Sinusoidal PWM Switching. 3.12 The Sizing of an Inverter for Microgrid Operation. 3.13 The Sizing of a Rectifi er for Microgrid Operation. 3.14 The Sizing of DC/DC Converters for Microgrid Operation. 4 SMART POWER GRID SYSTEMS. 4.1 Introduction. 4.2 Power Grid Operation. 4.3 The Vertically and Market-Structured Utility. 4.4 Power Grid Operations Control. 4.5 Load-Frequency Control. 4.6 Automatic Generation Control. 4.7 Operating Reserve Calculation. 4.8 The Basic Concepts of a Smart Power Grid. 4.9 The Load Factor. 4.10 A Cyber-Controlled Smart Grid. 4.11 Smart Grid Development. 4.12 Smart Microgrid Renewable Green Energy Systems. 4.13 A Power Grid Steam Generator. 4.14 Power Grid Modeling. 5 MICROGRID SOLAR ENERGY SYSTEMS. 5.1 Introduction. 5.2 The Solar Energy Conversion Process: Thermal Power Plants. 5.3 Photovoltaic Power Conversion. 5.4 Photovoltaic Materials. 5.5 Photovoltaic Characteristics. 5.6 Photovoltaic Effi ciency. 5.7 The Design of Photovoltaic Systems. 5.8 The Modeling of a Photovoltaic Module. 5.9 The Measurement of Photovoltaic Performance. 5.10 The Maximum Power Point of a Photovoltaic Array. 5.11 A Battery Storage System. 5.12 A Storage System Based on a Single-Cell Battery. 5.13 The Energy Yield of a Photovoltaic Module and the Angle of Incidence. 5.14 The State of Photovoltaic Generation Technology. 5.15 The Estimation of Photovoltaic Module Model Parameters. 6 MICROGRID WIND ENERGY SYSTEMS. 6.1 Introduction. 6.2 Wind Power. 6.3 Wind Turbine Generators. 6.4 The Modeling of Induction Machines. 6.5 Power Flow Analysis of an Induction Machine. 6.6 The Operation of an Induction Generator. 6.7 Dynamic Performance. 6.8 The Doubly-Fed Induction Generator. 6.9 Brushless Doubly-Fed Induction Generator Systems. 6.10 Variable-Speed Permanent Magnet Generators. 6.11 A Variable-Speed Synchronous Generator. 6.12 A Variable-Speed Generator with a Converter Isolated from the Grid. 7 LOAD FLOW ANALYSIS OF POWER GRIDS AND MICROGRIDS. 7.1 Introduction. 7.2 Voltage Calculation in Power Grid Analysis. 7.3 The Power Flow Problem. 7.4 Load Flow Study as a Power System Engineering Tool. 7.5 Bus Types. 7.6 General Formulation of the Power Flow Problem. 7.7 The Bus Admittance Model. 7.8 The Bus Impedance Matrix Model. 7.9 Formulation of the Load Flow Problem. 7.10 The Gauss Seidel YBus Algorithm. 7.11 The Gauss Seidel ZBus Algorithm. 7.12 Comparison of the YBus and ZBus Power Flow Solution Methods. 7.13 The Synchronous and Asynchronous Operation of Microgrids. 7.14 An Advanced Power Flow Solution Method: The Newton Raphson Algorithm. 7.15 The Fast Decoupled Load Flow Algorithm. 7.16 Analysis of a Power Flow Problem. 8 POWER GRID AND MICROGRID FAULT STUDIES. 8.1 Introduction. 8.2 Power Grid Fault Current Calculation. 8.3 Symmetrical Components. 8.4 Sequence Networks for Power Generators. 8.5 The Modeling of a Photovoltaic Generating Station. 8.6 Sequence Networks for Balanced Three-Phase Transmission Lines. 8.7 Ground Current Flow in Balanced Three-Phase Transformers. 8.8 Zero Sequence Network. 8.9 Fault Studies. APPENDIX A COMPLEX NUMBERS. APPENDIX B TRANSMISSION LINE AND DISTRIBUTION TYPICAL DATA. APPENDIX C ENERGY YIELD OF A PHOTOVOLTAIC MODULE AND ITS ANGLE OF INCIDENCE. APPENDIX D WIND POWER. INDEX.

2014 - IEEE SOUTHEASTCON 2014

Experimental implementation of Multi-Agent System algorithm for distributed restoration of a Smart Grid System

There have been numerous simulation works done on Grid Restoration using Multi-Agent System but almost no experimental work to ascertain the duplicity of these simulation results. This work aims to experimentally perform distributed restoration of a smart power grid system. The concept used in this research is based on the distributed and intelligent multi-agent system technology where multiple smart entities are geographically spread and if equipped with two-way communication capability these entities are able to reach goals or solutions that would have been impossible to reach with non-smart entities. The technology is implemented through the use of a six-bus experimental test bed set up using Tennessee Technological University Smart Grid Laboratory which is undergoing rapid development. The experimental results obtained align with simulation results published earlier and show that the proposed system can restore power in a timely manner without violating any constraints.

论文关键词

neural network power system internet of things electric vehicle data analysi renewable energy smart grid learning algorithm power grid image compression hyperspectral image matrix factorization source separation cyber-physical system energy management system sparse representation deep convolutional cloud storage blind source separation demand response blind source gradient method renewable energy system grid system dictionary learning hyperspectral datum latent semantic spectral clustering nonnegative matrix nonnegative matrix factorization hyperspectral imagery low rank image representation image inpainting public cloud matrix completion spectral datum smart grid system smart grid technology remote datum smart grid communication tensor factorization data matrix latent factor future smart grid factorization method spectral unmixing grid communication hyperspectral unmixing international system future smart smart power grid nonnegative matrice power grid system dictionary learning algorithm matrix factorization method data possession projected gradient graph regularized factorization based nonnegative tensor provable data possession system of units image inpainting method smart grid security provable datum public cloud storage matrix factorization technique projected gradient method factorization technique nonnegative tensor factorization nmf algorithm low-rank matrix factorization exemplar-based image inpainting image inpainting technique emerging smart grid matrix factorization problem multiplicative update based image inpainting regularized nonnegative matrix constrained nonnegative matrix sparse nonnegative kernel k-means clustering regularized nonnegative sparse nonnegative matrix matrix and tensor sparse nmf constrained nonnegative high-dimensional vector nmf method orthogonal nonnegative matrix graph regularized nonnegative nonnegative datum multi-way datum nonnegative tucker decomposition lee and seung weighted nonnegative matrix weighted nonnegative robust nonnegative matrix projective nonnegative matrix als algorithm robust nonnegative input data matrix projective nonnegative semantic image inpainting fast nonnegative wind power