今日推荐

2008 - Water Resources Research

Analysis of terrestrial water storage changes from GRACE and GLDAS

Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS). Additionally, we use GLDAS simulations to infer how TWSC is partitioned into snow, canopy water and soil water components, and to understand how variations in the hydrologic fluxes act to enhance or dissipate the stores. Results quantify the range of GRACE-derived storage changes during the studied period and place them in the context of seasonal variations in global climate and hydrologic extremes including drought and flood, by impacting land memory processes. The role of the largest continental river basins as major locations for freshwater redistribution is highlighted. GRACE-based storage changes are in good agreement with those obtained from GLDAS simulations. Analysis of GLDAS-simulated TWSC illustrates several key characteristics of spatial and temporal land water storage variations. Global averages of TWSC were partitioned nearly equally between soil moisture and snow water equivalent, while zonal averages of TWSC revealed the importance of soil moisture storage at low latitudes and snow storage at high latitudes. Evapotranspiration plays a key role in dissipating globally averaged terrestrial water storage. Latitudinal averages showed how precipitation dominates TWSC variations in the tropics, evapotranspiration is most effective in the midlatitudes, and snowmelt runoff is a key dissipating flux at high latitudes. Results have implications for monitoring water storage response to climate variability and change, and for constraining land model hydrology simulations.

2001 - Water Resources Research

An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE)

Variations in terrestrial water storage affect weather, climate, geophysical phenomena, and life on land, yet observation and understanding of terrestrial water storage are deficient. However, estimates of terrestrial water storage changes soon may be derived from observations of Earth's time-dependent gravity field made by NASA's Gravity Recovery and Climate Experiment (GRACE). Previous studies have evaluated that concept using modeled soil moisture and snow data. This investigation builds upon their results by relying on observations rather than modeled results, by analyzing groundwater and surface water variations as well as snow and soil water variations, and by using a longer time series. Expected uncertainty in GRACE-derived water storage changes are compared to monthly, seasonal, and annual terrestrial water storage changes estimated from observations in Illinois (145,800 km2). Assuming those changes are representative of larger regions, detectability is possible given a 200,000 km2 or larger area. Changes in soil moisture are typically the largest component of terrestrial water storage variations, followed by changes in groundwater plus intermediate zone storage.

2006

A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois

This study presents the first direct comparison of terrestrial water storage estimates from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to in situ hydrological observations. Monthly anomalies of total water storage derived from GRACE gravity fields are compared with combined soil moisture and groundwater measurements from a network of observing sites in Illinois. This comparison is achieved through the use of a recently developed filtering technique designed to selectively remove correlated errors in the GRACE spectral coefficients. Application of this filter significantly improves the spatial resolution of the GRACE water storage estimates, and produces a time series which agrees quite well (RMS difference = 20.3 mm) with the in situ measurements averaged over an area of ∼280,000 km2.

2010 - Water Resources Research

The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE

[1] The Gravity Recovery and Climate Experiment (GRACE) satellite gravity mission provides a new capability for measuring extreme climate events, such as floods and droughts associated with large‐scale terrestrial water storage (TWS) change. GRACE gravity measurements show significant TWS increases in the lower Amazon basin in the first half of 2009, clearly associated with the exceptional flood season in that region. The extended record of GRACE monthly gravity solutions reveals the temporal and spatial evolution of both nonseasonal and interannual TWS change in the Amazon basin over the 7 year mission period from April 2002 to August 2009. GRACE observes a very dry season in 2002–2003 and an extremely wet season in 2009. In March 2009 (approximately the peak of the recent Amazon flood), total TWS surplus in the entire Amazon basin is ∼624 ± 32 Gt, roughly equal to U.S. water consumption for a year. GRACE measurements are consistent with precipitation data. Interannual TWS changes in the Amazon basin are closely connected to ENSO events in the tropical Pacific. The 2002–2003 dry season is clearly tied to the 2002–2003 El Nino and the 2009 flood to the recent La Nina event. The most significant contribution of this study in the area of water resources is to confront the hydrological community with the latest results of the GRACE satellite mission and further demonstrates the unique strength of GRACE and follow‐up satellite gravity observations for measuring large‐scale extreme climate events.

2009

Closing the terrestrial water budget from satellite remote sensing

The increasing availability of remote sensing products for all components of the terrestrial water cycle makes it now possible to evaluate the potential of water balance closure purely from remote sensing sources. We take precipitation (P) from the TMPA and CMORPH products, a Penman‐Monteith based evapotranspiration (E) estimate derived from NASA Aqua satellite data and terrestrial water storage change (ΔS) from the GRACE satellite. Their combined ability to close the water budget is evaluated over the Mississippi River basin for 2003–5 by estimating streamflow (Q) as a residual of the water budget and comparing to streamflow measurements. We find that Q is greatly overestimated due mainly to the high bias in P, especially in the summer. Removal of systematic biases in P reduces the error significantly. However, uncertainties in the individual budget components due to simplifications in process algorithms and input data error are generally larger than the measured streamflow.

2007

Comparison of seasonal terrestrial water storage variations from GRACE with groundwater‐level measurements from the High Plains Aquifer (USA)

This study presents the first comparison of seasonal groundwater storage (GWS) variations derived from GRACE satellite data with groundwater‐level measurements in the High Plains Aquifer, USA (450,000 km2). Correlation between seasonal GRACE terrestrial water storage (TWS) and the sum of GWS estimated from field measurements (2,700 wells) and soil moisture (SM) simulated by a land surface model is high (R = 0.82). Correlation between GRACE‐derived and measured GWS is also significant (R = 0.58). Seasonal GRACE‐derived TWS and GWS changes were detectable (≥ uncertainty) in 7 and 5 out of 9 monitored periods respectively whereas maximum changes (between winter/spring and summer/fall) in TWS and GWS were detectable in all 5 monitored periods. These results show the potential for GRACE to monitor GWS changes in semiarid regions where irrigation pumpage causes large seasonal GWS variations.

2007 - Journal of Hydrometeorology

GRACE-Based Estimates of Terrestrial Freshwater Discharge from Basin to Continental Scales

In this study, new estimates of monthly freshwater discharge from continents, drainage regions, and global land for the period of 2003–05 are presented. The method uses observed terrestrial water storage change estimates from the Gravity Recovery and Climate Experiment (GRACE) and reanalysis-based atmospheric moisture divergence and precipitable water tendency in a coupled land–atmosphere water mass balance. The estimates of freshwater discharge are analyzed within the context of global climate and compared with previously published estimates. Annual cycles of observed streamflow exhibit stronger correlations with the computed discharge compared to those with precipitation minus evapotranspiration (P − E) in several of the world’s largest river basins. The estimate presented herein of the mean monthly discharge from South America (∼846 km3 month−1) is the highest among the continents and that flowing into the Atlantic Ocean (∼1382 km3 month−1) is the highest among the drainage regions. The volume...

2004 - Journal of Climate

Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River Basin

Terrestrial water storage is an essential part of the hydrological cycle, encompassing crucial elements of the climate system, such as soil moisture, groundwater, snow, and land ice. On a regional scale, it is however not a readily measured variable and observations of its individual components are scarce. This study investigates the feasability of estimating monthly terrestrial water-storage variations from water-balance computations, using the following three variables: water vapor flux convergence, atmospheric water vapor content, and river runoff. The two first variables are available with high resolution and good accuracy in the present reanalysis datasets, and river runoff is commonly measured in most parts of the world. The applicability of this approach is tested in a 10-yr (1987–96) case study for the Mississippi River basin. Data used include European Centre for Medium- Range Weather Forecasts 40-yr reanalysis (ERA-40) data (water vapor flux and atmospheric water vapor content) and runo...

2009 - Geophysical Research Letters

Role of rivers in the seasonal variations of terrestrial water storage over global basins

[1] The role of rivers in total terrestrial water storage (TWS) variations is evaluated in 29 basins. The contribution of individual storage components to total TWS is investigated by using ensemble hydrological simulations with river routing. The observed Gravity Recovery And Climate Experiment (GRACE) TWS data are used to validate model simulations. It is found TWS simulations are more accurate when river storage is taken into account except for dry basins. Rivers play different roles in various climatic regions as indicated by two new indices quantifying the significance of each TWS component and their interactions. River storage, which effectively includes downslope movement of shallow groundwater, explains up to 73% of TWS variations in Amazon. It also acts as “buffer” which smoothes TWS seasonal variations particularly in snow-dominated basins. Neglecting river storage may lead to mismatch in the amplitude and phase of TWS seasonal variations compared to the GRACE observations.

2017 - Journal of Hydrology

Influences of recent climate change and human activities on water storage variations in Central Asia

Terrestrial water storage (TWS) change is an indicator of climate change. Therefore, it is helpful to understand how climate change impacts water systems. In this study, the influence of climate change on TWS in Central Asia over the past decade was analyzed using the Gravity Recovery and Climate Experiment satellites and Climatic Research Unit datasets. Results indicate that TWS experienced a decreasing trend in Central Asia from 2003 to 2013 at a rate of −4.44 ± 2.2 mm/a, and that the maximum positive anomaly for TWS (46 mm) occurred in July 2005, while the minimum negative anomaly (−32.5 mm) occurred in March 2008–August 2009. The decreasing trend of TWS in northern Central Asia (−3.86 ± 0.63 mm/a) is mainly attributed to soil moisture storage depletion, which is driven primarily by the increase in evapotranspiration. In the mountainous regions, climate change exerted an influence on TWS by affecting glaciers and snow cover change. However, human activities are now the dominant factor driving the decline of TWS in the Aral Sea region and the northern Tarim River Basin.

2010

Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges

In earth system models, the partitioning of precipitation among the variations of continental water storage, evapotranspiration, and freshwater runoff to the ocean has a major influence on the terrestrial water and energy budgets and thereby on simulated climate on a wide range of scales. The evaluation of continental hydrology is therefore a crucial task that requires offline simulations driven by realistic atmospheric forcing to avoid the systematic biases commonly found in global atmospheric models. Generally, this evaluation is done mainly by comparison with in situ river discharge data, which does not guarantee that the spatiotemporal distribution of water storage and evapotranspiration is correctly simulated. In this context, the Interactions between Soil, Biosphere, and Atmosphere–Total Runoff Integrating Pathways (ISBA-TRIP) continental hydrological system of the Centre National de Recherches Meteorologiques is evaluated by using the additional constraint of terrestrial water storage (TWS...

2018 - Remote. Sens.

Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review

The Gravity Recovery and Climate Experiment (GRACE) satellite mission, which was in operation from March 2002 to June 2017, was the first remote sensing mission to provide temporal variations of Terrestrial Water Storage (TWS), which is the sum of the water masses that were contained in the soil column (i.e., snow, surface water, soil moisture, and groundwater), at a spatial resolution of a few hundred kilometers. As in situ level measurements are generally not sufficiently available for monitoring groundwater changes at the regional-scale, this unique dataset, combined with external information, is widely used to quantify the interannual variations of groundwater storage in the world’s major aquifers. GRACE-based groundwater changes revealed significant aquifer depletion over large regions, such as the Middle East, the northwest India aquifer, the North China Plain aquifer, the Murray-Darling Basin in Australia, the High Plains, and the California Central Valley aquifers in the United States of America (USA), but were also used to estimate groundwater-related parameters such as the specific yield, which relates groundwater level to storage, or to define the indices of groundwater depletion and stress. In this review, the approaches used for estimating groundwater storage variations are presented along with the main applications of GRACE data for groundwater monitoring. Issues that were related to the use of GRACE-based TWS are also addressed.

2005 - Journal of Geophysical Research

Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations

We analyze the spatial sensitivities of terrestrial water storage and geoid height changes determined from the time-variable gravity observed by the Gravity Recovery and Climate Experiment (GRACE) twin satellite mission. On the basis of 15 GRACE monthly gravity solutions, covering the period April 2002 to December 2003, we examine the effects of spatial smoothing at radii varying from 400 to 2000 km and conclude that a 800 km Gaussian smoothing radius is effective for GRACE-derived terrestrial water storage and produces the minimum RMS residuals over the land of the differences between GRACE results and estimated water storage change from a global land data assimilation system. For GRACE estimated geoid height change, the effective smoothing radius can go down to 600 km. When the annual (e.g., the sine and cosine) components are the primary concern, the effective spatial resolution can reach 600 and 400 km for GRACE estimated terrestrial water storage or geoid height change, respectively.

2015 - Journal of Geophysical Research

GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon

The Global Positioning System (GPS) measures elastic ground loading deformation in response to hydrological mass variations on or near Earth's surface. We present a time series of change in terrestrial water storage as a function of position in Washington and Oregon estimated using GPS measurements of vertical displacement of Earth's surface. The distribution of water variation inferred from GPS is highly correlated with physiographic provinces: the seasonal water is mostly located in the mountain areas, such as the Cascade Range and Olympic Mountains, and is much smaller in the basin and valley areas of the Columbia Basin and Harney Basin. GPS is proven to be an independent measurement to distinguish between hydrological models. The drought period of 2008–2010 (maximum in 2010) and the recovery period of 2011–2012 in the Cascade Range are well recovered with GPS‐determined time‐variable monthly water mass series. The GPS‐inferred water storage variation in the Cascade Range is consistent with that derived from JPL's GRACE monthly mass grid solutions. The percentage of RMS reduction is ~62% when we subtract GRACE water series from GPS‐derived results. GPS‐determined water storage variations can fill gaps in the current GRACE mission, also in the transition period from the current GRACE to the future GRACE Follow‐on missions. We demonstrate that the GPS‐inferred water storage variations can determine and verify local scaling factors for GRACE measurements; in the Cascade Range, the RMS reduction between GRACE series scaled by GPS and scaled by the hydrological model‐based GRACE Tellus gain factors is up to 90.5%.

2011 - Hydrological Processes

Estimating evapotranspiration using an observation based terrestrial water budget

Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500 m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization. Copyright © 2011 John Wiley & Sons, Ltd.

论文关键词

neural network sensor network wireless sensor network wireless sensor deep learning comparative study base station information retrieval feature extraction sensor node programming language cellular network random field digital video number theory rate control network lifetime river basin hyperspectral imaging distributed algorithm chemical reaction carnegie mellon university fly ash visual feature boundary detection video retrieval diabetes mellitu semantic indexing oryza sativa water storage user association efficient wireles shot boundary shot boundary detection data assimilation system retrieval task controlled trial terrestrial television video search gps network sensor network consist efficient wireless sensor information retrieval task concept detection video captioning retrieval evaluation rice seed safety equipment endangered species station operation case study involving dublin city university high-level feature seed germination brown coal high plain study involving structure recognition climate experiment gravity recovery table structure land data assimilation instance search combinatorial number randomised controlled trial recovery and climate randomised controlled combinatorial number theory adult male high-level feature extraction complete proof music perception robust computation optimization-based method perception and cognition global land datum social perception terrestrial water storage trec video retrieval terrestrial water object-oriented conceptual video retrieval evaluation trec video seed variety base station operation table structure recognition transgenic rice concept detector total water storage groundwater storage regional gp grace gravity randomized distributed algorithm ibm tivoli workload scheduler cerebrovascular accident case study united state