今日推荐

2019 - IEEE Access

DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series

Traditional distance and density-based anomaly detection techniques are unable to detect periodic and seasonality related point anomalies which occur commonly in streaming data, leaving a big gap in time series anomaly detection in the current era of the IoT. To address this problem, we present a novel deep learning-based anomaly detection approach (DeepAnT) for time series data, which is equally applicable to the non-streaming cases. DeepAnT is capable of detecting a wide range of anomalies, i.e., point anomalies, contextual anomalies, and discords in time series data. In contrast to the anomaly detection methods where anomalies are learned, DeepAnT uses unlabeled data to capture and learn the data distribution that is used to forecast the normal behavior of a time series. DeepAnT consists of two modules: time series predictor and anomaly detector. The time series predictor module uses deep convolutional neural network (CNN) to predict the next time stamp on the defined horizon. This module takes a window of time series (used as a context) and attempts to predict the next time stamp. The predicted value is then passed to the anomaly detector module, which is responsible for tagging the corresponding time stamp as normal or abnormal. DeepAnT can be trained even without removing the anomalies from the given data set. Generally, in deep learning-based approaches, a lot of data are required to train a model. Whereas in DeepAnT, a model can be trained on relatively small data set while achieving good generalization capabilities due to the effective parameter sharing of the CNN. As the anomaly detection in DeepAnT is unsupervised, it does not rely on anomaly labels at the time of model generation. Therefore, this approach can be directly applied to real-life scenarios where it is practically impossible to label a big stream of data coming from heterogeneous sensors comprising of both normal as well as anomalous points. We have performed a detailed evaluation of 15 algorithms on 10 anomaly detection benchmarks, which contain a total of 433 real and synthetic time series. Experiments show that DeepAnT outperforms the state-of-the-art anomaly detection methods in most of the cases, while performing on par with others.

2009 - Machine Learning

Finding anomalous periodic time series

Catalogs of periodic variable stars contain large numbers of periodic light-curves (photometric time series data from the astrophysics domain). Separating anomalous objects from well-known classes is an important step towards the discovery of new classes of astronomical objects. Most anomaly detection methods for time series data assume either a single continuous time series or a set of time series whose periods are aligned. Light-curve data precludes the use of these methods as the periods of any given pair of light-curves may be out of sync. One may use an existing anomaly detection method if, prior to similarity calculation, one performs the costly act of aligning two light-curves, an operation that scales poorly to massive data sets. This paper presents PCAD, an unsupervised anomaly detection method for large sets of unsynchronized periodic time-series data, that outputs a ranked list of both global and local anomalies. It calculates its anomaly score for each light-curve in relation to a set of centroids produced by a modified k-means clustering algorithm. Our method is able to scale to large data sets through the use of sampling. We validate our method on both light-curve data and other time series data sets. We demonstrate its effectiveness at finding known anomalies, and discuss the effect of sample size and number of centroids on our results. We compare our method to naive solutions and existing time series anomaly detection methods for unphased data, and show that PCAD’s reported anomalies are comparable to or better than all other methods. Finally, astrophysicists on our team have verified that PCAD finds true anomalies that might be indicative of novel astrophysical phenomena.

2017 - Expert Syst. Appl.

Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform

Design of a transferable time series anomaly detection method.Novel deep neural network structure facilitates learning short and long-term pattern interdependencies.Detection of anomalies in the Seismic Electrical Signal for predicting earthquake activity.Detection of road anomalies using smartphone data, facilitating crowdsourcing applications. The quest for more efficient real-time detection of anomalies in time series data is critically important in numerous applications and systems ranging from intelligent transportation, structural health monitoring, heart disease, and earthquake prediction. Although the range of application is wide, anomaly detection algorithms are usually domain specific and build on experts knowledge. Here a new signal processing algorithm inspired by the deep learning paradigm is presented that combines wavelets, neural networks, and Hilbert transform. The algorithm performs robustly and is transferable. The proposed neural network structure facilitates learning short and long-term pattern interdependencies; a task usually hard to accomplish using standard neural network training algorithms. The paper provides guidelines for selecting the neural network's buffer size, training algorithm, and anomaly detection features. The algorithm learns the system's normal behavior and does not require the existence of anomalous data for assessing its statistical significance. This is an essential attribute in applications that require customization. Anomalies are detected by analysing hierarchically the instantaneous frequency and amplitude of the residual signal using probabilistic Receiver Operating Characteristics. The method is shown to be able to automatically detect anomalies in the Seismic Electrical Signal that could be used to predict earthquake activity. Furthermore, the method can be used in combination with crowdsourcing of smartphone data to locate road defects such as potholes and bumps for intervention and repair.

论文关键词

neural network sensor network machine learning artificial neural network support vector machine deep learning time series data mining support vector vector machine wavelet transform data analysi deep neural network neural network model hidden markov model regression model deep neural anomaly detection gene expression data base generative adversarial network generative adversarial time series datum adversarial network experimental datum fourier series nearest neighbor support vector regression time series analysi missing datum data based moving average gene expression datum time series model series analysi lyapunov exponent series datum outlier detection dynamic time warping time series forecasting data mining algorithm panel datum time series prediction series model multivariate time series finite time unit root dynamic time linear and nonlinear series forecasting time warping distance measure financial time series series prediction integrated moving average experimental comparison multivariate time financial time dependent variable chaotic time series nonlinear time vegetation index nonlinear time series arima model fuzzy time large time anomaly detection method fuzzy time series chaotic time autoregressive integrated moving time series based air pollutant time series classification representation method fokker-planck equation series representation similarity analysi series classification univariate time series time series clustering unsupervised anomaly detection periodic pattern nearest neighbor classification time series dataset series data mining time series regression anomaly detection approach time series database series clustering observed time series forecasting time series local similarity long time series time series similarity series database fmri time series complex time indian stock market time series representation symbolic aggregate approximation complex time series forecasting time series data set series similarity fmri time time series anomaly large time series series data analysi series anomaly detection analyzing time series expression time series interrupted time series ucr time series time correction modeling time series clustering time series mining time series interrupted time series data based fourier series representation simple exponential smoothing early classification forecast time series time series subsequence sensor networks pose distributed index piecewise constant approximation quality time series mining time microarray time series incomplete time series massive time series large-scale time series analysing time series microarray time neural time series mri time neural time series data generated time series experiment visualizing time series called time series data set