Uniform Complete Observability of Mass and Rotational Inertial Parameters in Adaptive Identification of Rigid-Body Plant Dynamics

This paper addresses the long-standing open problem of observability of mass and inertia plant parameters in the adaptive identification (AID) of second-order nonlinear models of 6 degree-of-freedom rigid-body dynamical systems subject to externally applied forces and moments. Although stable methods for AID of plant parameters for this class of systems, as well numerous approaches to stable model-based direct adaptive trajectory-tracking control of such systems, have been reported, these studies have been unable to prove analytically that the adaptive parameter estimates converge to the true plant parameter values. This paper reports necessary and sufficient conditions for the uniform complete observability (UCO) of 6-DOF plant inertial parameters for a stable adaptive identifier for this class of systems. When the UCO condition is satisfied, the adaptive parameter estimates are shown to converge to the true plant parameter values. To the best of our knowledge this is the first reported proof for this class of systems of UCO of plant parameters and for convergence of adaptive parameter estimates to true parameter values.We also report a numerical simulation study of this AID approach which shows that (a) the UCO condition can be met for fully-actuated plants as well as underactuated plants with the proper choice of control input and (b) convergence of adaptive parameter estimates to the true parameter values. We conjecture that this approach can be extended to include other parameters that appear rigid body plant models including parameters for drag, buoyancy, added mass, bias, and actuators.

[1]  Anuradha M. Annaswamy,et al.  Convergence Properties of Adaptive Systems and the Definition of Exponential Stability , 2015, SIAM J. Control. Optim..

[2]  Marcelo H. Ang,et al.  Dynamic Model Identification for Industrial Robots , 2009 .

[3]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[4]  Angelo Alessandri,et al.  Application of LS and EKF techniques to the identification of underwater vehicles , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[5]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Wisama Khalil,et al.  Modeling, Identification & Control of Robots , 2002 .

[7]  Edward Kamen Fundamentals of Linear Time-Varying Systems , 2010 .

[8]  G. Besançon Remarks on nonlinear adaptive observer design , 2000 .

[9]  Louis L. Whitcomb,et al.  Comparative experimental evaluation of a new adaptive identifier for underwater vehicles , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  Takeo Kanade,et al.  Parameter identification of robot dynamics , 1985, 1985 24th IEEE Conference on Decision and Control.

[11]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[12]  J.A. Keim,et al.  Spacecraft inertia estimation via constrained least squares , 2006, 2006 IEEE Aerospace Conference.

[13]  Thor I. Fossen,et al.  Handbook of Marine Craft Hydrodynamics and Motion Control , 2011 .

[14]  Louis L. Whitcomb,et al.  Adaptive Bias and Attitude Observer on the Special Orthogonal Group for True-North Gyrocompass Systems: Theory and Preliminary Results , 2018, Robotics: Science and Systems.

[15]  Maria Adler,et al.  Stable Adaptive Systems , 2016 .

[16]  Klaus Röbenack,et al.  A combined observer and filter based approach for the determination of unknown parameters , 2009, Int. J. Syst. Sci..

[17]  Bernd Faust,et al.  Model-Based Control of a Robot Manipulator , 1988 .

[18]  Tyler Paine Robust Model Identification Methods for Nonlinear Second-Order Plant Models for Underwater Vehicles , 2018 .

[19]  Zachary J. Harris,et al.  Model-based Cooperative Acoustic Navigation and Parameter Identification for Underactuated Underwater Vehicles , 2019 .

[20]  W. Marsden I and J , 2012 .

[21]  Wilson J. Rugh,et al.  Linear system theory (2nd ed.) , 1996 .

[23]  Alessandro Astolfi,et al.  A Geometric Characterization of the Persistence of Excitation Condition for the Solutions of Autonomous Systems , 2017, IEEE Transactions on Automatic Control.

[24]  Mason A. Peck,et al.  In-Orbit Estimation of Inertia and Momentum-Actuator Alignment Parameters , 2011 .

[25]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .