Determining the significance and relative importance of parameters of a simulated quenching algorithm using statistical tools
暂无分享,去创建一个
Juan Julián Merelo Guervós | Pedro A. Castillo | Antonio Mora García | Maribel García Arenas | Juan Luis Jiménez Laredo | Pablo García-Sánchez | Nuria Rico | J. J. M. Guervós | A. García | P. García-Sánchez | M. G. Arenas | Nuria Rico | P. Castillo | J. L. Laredo
[1] Dr. Zbigniew Michalewicz,et al. How to Solve It: Modern Heuristics , 2004 .
[2] Juan José Rodríguez Diez,et al. Random projections for linear SVM ensembles , 2011, Applied Intelligence.
[3] K. Dejong,et al. An analysis of the behavior of a class of genetic adaptive systems , 1975 .
[4] B. Chakrabarti,et al. Quantum Annealing and Related Optimization Methods , 2008 .
[5] Seth D. Guikema,et al. A derivation of the number of minima of the Griewank function , 2008, Appl. Math. Comput..
[6] Alex S. Fukunaga,et al. Distributed island-model genetic algorithms using heterogeneous parameter settings , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).
[7] Thomas Stützle,et al. Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.
[8] C. J. Kim,et al. An algorithmic approach for fuzzy inference , 1997, IEEE Trans. Fuzzy Syst..
[9] A. E. Eiben,et al. Comparing parameter tuning methods for evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.
[10] Ajith Abraham,et al. A Bacterial Evolutionary Algorithm for automatic data clustering , 2009, 2009 IEEE Congress on Evolutionary Computation.
[11] J. David Schaffer,et al. An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.
[12] Julian F. Miller,et al. Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.
[13] L. Darrell Whitley,et al. Quad Search and Hybrid Genetic Algorithms , 2003, GECCO.
[14] David B. Fogel,et al. Evolutionary algorithms in theory and practice , 1997, Complex.
[15] Xin-She Yang,et al. Nature-Inspired Metaheuristic Algorithms , 2008 .
[16] A. E. Eiben,et al. Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist , 2010, EvoApplications.
[17] Nirwan Ansari,et al. An efficient annealing algorithm for global optimization in Boltzmann machines , 2004, Applied Intelligence.
[18] Ramón Gutiérrez,et al. Inference on some parametric functions in the univeriate lognormal diffusion process with exogenous factors , 2001 .
[19] A. Griewank. Generalized descent for global optimization , 1981 .
[20] John J. Grefenstette,et al. Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.
[21] Nostrand Reinhold,et al. the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .
[22] Ah-Hwee Tan,et al. On Machine Learning Methods for Chinese Document Categorization , 2003, Applied Intelligence.
[23] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[25] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[26] Lester Ingber,et al. Simulated annealing: Practice versus theory , 1993 .
[27] R. Capocelli,et al. A diffusion model for population growth in random environment. , 1974, Theoretical population biology.
[28] Jeffrey Horn,et al. Handbook of evolutionary computation , 1997 .
[29] A. E. Eiben,et al. Using Entropy for Parameter Analysis of Evolutionary Algorithms , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[30] El-Ghazali Talbi,et al. Metaheuristics - From Design to Implementation , 2009 .
[31] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[32] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[33] Charles L. Karr,et al. A Self-Tuning Evolutionary Algorithm Applied to an Inverse Partial Differential Equation , 2003, Applied Intelligence.
[34] Mark Harman,et al. Handling dynamic data structures in search based testing , 2008, GECCO '08.
[35] Chih-Chin Lai,et al. Special issue on the future and frontier of applied intelligence , 2010, Applied Intelligence.
[36] Francisco Herrera,et al. A taxonomy for the crossover operator for real‐coded genetic algorithms: An experimental study , 2003, Int. J. Intell. Syst..
[37] Christopher R. Stephens,et al. "Optimal" mutation rates for genetic search , 2006, GECCO.
[38] Francisco Herrera,et al. A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems , 2012, Applied Intelligence.
[39] Thomas Jansen,et al. Analysis of evolutionary algorithms for the longest common subsequence problem , 2007, GECCO '07.
[40] Zbigniew Michalewicz,et al. Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.
[41] A. E. Eiben,et al. Introduction to Evolutionary Computing , 2003, Natural Computing Series.
[42] Basel M. Al‐Eideh,et al. Modelling the CPI using a lognormal diffusion process and implications on forecasting inflation , 2004 .
[43] Francisco Herrera,et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.
[44] P. Flick,et al. Evolutionäre Algorithmen , 2012 .
[45] B. Maddock,et al. FROM DESIGN TO IMPLEMENTATION , 1982 .
[46] Zbigniew Michalewicz,et al. Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[47] Thomas Bartz-Beielstein,et al. Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.
[48] Geoffrey D. Rubin,et al. Learning-enhanced simulated annealing: method, evaluation, and application to lung nodule registration , 2008, Applied Intelligence.
[49] Yoav Benjamini,et al. Opening the Box of a Boxplot , 1988 .
[50] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[51] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[52] David E. Goldberg,et al. The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.
[53] Xin Yao,et al. Adapting Self-Adaptive Parameters in Evolutionary Algorithms , 2001, Applied Intelligence.
[54] Zbigniew Michalewicz,et al. Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.
[55] Ilona Jagielska,et al. An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems , 1999, Neurocomputing.
[56] Héctor Pomares,et al. Statistical analysis of the main parameters involved in the design of a genetic algorithm , 2002, IEEE Trans. Syst. Man Cybern. Part C.
[57] Fernando G. Lobo,et al. A parameter-less genetic algorithm , 1999, GECCO.
[58] J. Vicente,et al. Placement by thermodynamic simulated annealing , 2003 .
[59] Bertrand Neveu,et al. New requirements for off-line parameter calibration algorithms , 2010, IEEE Congress on Evolutionary Computation.
[60] Stephanie Forrest,et al. Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .
[61] John J. Grefenstette,et al. Genetic algorithms and their applications , 1987 .
[62] Dennis Weyland,et al. Simulated annealing, its parameter settings and the longest common subsequence problem , 2008, GECCO '08.
[63] A. E. Eiben,et al. Beating the ‘world champion’ evolutionary algorithm via REVAC tuning , 2010, IEEE Congress on Evolutionary Computation.
[64] Ignacio Rojas,et al. Statistical analysis of the parameters of a neuro-genetic algorithm , 2002, IEEE Trans. Neural Networks.
[65] Laura Diosan,et al. Improving classification performance of Support Vector Machine by genetically optimising kernel shape and hyper-parameters , 2010, Applied Intelligence.
[66] Bikas K. Chakrabarti,et al. Quantum Annealing and Other Optimization Methods , 2005 .
[67] Risto Miikkulainen,et al. Measure-theoretic evolutionary annealing , 2011, IEEE Congress on Evolutionary Computation.
[68] Victor J. Rayward-Smith,et al. Discretisation of Continuous Commercial Database Features for a Simulated Annealing Data Mining Algorithm , 1999, Applied Intelligence.
[69] A. E. Eiben,et al. Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.
[70] Dirk Thierens. Dimensional Analysis of Allele-Wise Mixing Revisited , 1996, PPSN.
[71] Sung-Bae Cho,et al. Exploiting mobile contexts for Petri-net to generate a story in cartoons , 2011, Applied Intelligence.
[72] Thomas Bartz-Beielstein,et al. Analysis of Particle Swarm Optimization Using Computational Statistics , 2004 .
[73] Lawrence. Davis,et al. Handbook Of Genetic Algorithms , 1990 .
[74] A. E. Eiben,et al. A method for parameter calibration and relevance estimation in evolutionary algorithms , 2006, GECCO '06.
[75] Grahame B. Smith. Stuart Geman and Donald Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”; , 1987 .
[76] Y. S. Wong,et al. Development of Heterogeneous Parallel Genetic Simulated Annealing Using Multi-Niche Crowding , 2007 .
[77] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[78] Erkam Uzun,et al. A real time traffic simulator utilizing an adaptive fuzzy inference mechanism by tuning fuzzy parameters , 2011, Applied Intelligence.
[79] Chulhyun Kim,et al. Forecasting time series with genetic fuzzy predictor ensemble , 1997, IEEE Trans. Fuzzy Syst..
[80] Thomas Stützle,et al. Stochastic Local Search , 2007, Handbook of Approximation Algorithms and Metaheuristics.
[81] Seppo J. Ovaska,et al. A general framework for statistical performance comparison of evolutionary computation algorithms , 2006, Inf. Sci..
[82] Miguel Cazorla,et al. Portable autonomous walk calibration for 4-legged robots , 2010, Applied Intelligence.
[83] Donald Geman,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .
[84] D. Ackley. A connectionist machine for genetic hillclimbing , 1987 .
[85] Shiu Yin Yuen,et al. Parameter control by the entire search history: Case study of history-driven evolutionary algorithm , 2010, IEEE Congress on Evolutionary Computation.
[86] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[87] G. B. Smith,et al. Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .
[88] Zbigniew Michalewicz,et al. Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .
[89] Jürgen Teich,et al. Systematic integration of parameterized local search into evolutionary algorithms , 2004, IEEE Transactions on Evolutionary Computation.
[90] Thomas Bartz-Beielstein,et al. Tuning search algorithms for real-world applications: a regression tree based approach , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[91] Zbigniew Michalewicz,et al. Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.
[92] Dirk Thierens,et al. Toward a Better Understanding of Mixing in Genetic Algorithms , 1993 .