Leveraging Task Variability in Meta-learning

[1]  Yu Wang,et al.  Meta-learning with an Adaptive Task Scheduler , 2021, NeurIPS.

[2]  Peter Stone,et al.  Conflict-Averse Gradient Descent for Multi-task Learning , 2021, NeurIPS.

[3]  Yuekai Sun,et al.  On sensitivity of meta-learning to support data , 2021, NeurIPS.

[4]  Stefano Soatto,et al.  Uniform Sampling over Episode Difficulty , 2021, NeurIPS.

[5]  Chelsea Finn,et al.  Just Train Twice: Improving Group Robustness without Training Group Information , 2021, ICML.

[6]  Sebastian Nowozin,et al.  Memory Efficient Meta-Learning with Large Images , 2021, NeurIPS.

[7]  Sung Ju Hwang,et al.  Large-Scale Meta-Learning with Continual Trajectory Shifting , 2021, ICML.

[8]  Narayanan C. Krishnan,et al.  Stress Testing of Meta-learning Approaches for Few-shot Learning , 2021, MetaDL@AAAI.

[9]  Ricardo Luna Gutierrez,et al.  Information-theoretic Task Selection for Meta-Reinforcement Learning , 2020, Neural Information Processing Systems.

[10]  Sébastien M. R. Arnold,et al.  learn2learn: A Library for Meta-Learning Research , 2020, ArXiv.

[11]  Zhihao Wang,et al.  Adaptive Task Sampling for Meta-Learning , 2020, ECCV.

[12]  Marc Peter Deisenroth,et al.  Probabilistic Active Meta-Learning , 2020, NeurIPS.

[13]  S. Gelly,et al.  Big Transfer (BiT): General Visual Representation Learning , 2019, ECCV.

[14]  Kate Saenko,et al.  A Broader Study of Cross-Domain Few-Shot Learning , 2019, ECCV.

[15]  Bernt Schiele,et al.  Meta-Transfer Learning Through Hard Tasks , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  André Susano Pinto,et al.  A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark , 2019, 1910.04867.

[17]  Oriol Vinyals,et al.  Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML , 2019, ICLR.

[18]  Stefano Soatto,et al.  A Baseline for Few-Shot Image Classification , 2019, ICLR.

[19]  Yu-Chiang Frank Wang,et al.  A Closer Look at Few-shot Classification , 2019, ICLR.

[20]  Hugo Larochelle,et al.  Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples , 2019, ICLR.

[21]  Jian Li,et al.  On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning , 2019, ICLR.

[22]  Bernt Schiele,et al.  Meta-Transfer Learning for Few-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Amos J. Storkey,et al.  How to train your MAML , 2018, ICLR.

[24]  Razvan Pascanu,et al.  Meta-Learning with Latent Embedding Optimization , 2018, ICLR.

[25]  Alexandre Lacoste,et al.  TADAM: Task dependent adaptive metric for improved few-shot learning , 2018, NeurIPS.

[26]  Mubarak Shah,et al.  Task Agnostic Meta-Learning for Few-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Bin Yang,et al.  Learning to Reweight Examples for Robust Deep Learning , 2018, ICML.

[28]  Joshua B. Tenenbaum,et al.  Meta-Learning for Semi-Supervised Few-Shot Classification , 2018, ICLR.

[29]  Li Fei-Fei,et al.  MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels , 2017, ICML.

[30]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[31]  Hang Li,et al.  Meta-SGD: Learning to Learn Quickly for Few Shot Learning , 2017, ArXiv.

[32]  Andrew McCallum,et al.  Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples , 2017, NIPS.

[33]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[34]  Hugo Larochelle,et al.  Optimization as a Model for Few-Shot Learning , 2016, ICLR.

[35]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[36]  Abhinav Gupta,et al.  Training Region-Based Object Detectors with Online Hard Example Mining , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Tong Zhang,et al.  Stochastic Optimization with Importance Sampling for Regularized Loss Minimization , 2014, ICML.

[38]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[39]  Daphne Koller,et al.  Self-Paced Learning for Latent Variable Models , 2010, NIPS.

[40]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[41]  George Loizou,et al.  Computer vision and pattern recognition , 2007, Int. J. Comput. Math..

[42]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[43]  H. Kahn,et al.  Methods of Reducing Sample Size in Monte Carlo Computations , 1953, Oper. Res..

[44]  H. Larochelle,et al.  A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches , 2021, NeurIPS Datasets and Benchmarks.

[45]  SeYoung Yun,et al.  BOIL: Towards Representation Change for Few-shot Learning , 2021, ICLR.