High-resolution laser spectroscopy of $^{27-32}$Al

Hyperfine spectra of 27–32 Al ( Z = 13) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the 3 s 2 3 p 2 P o3 / 2 → 3 s 2 4 s 2 S 1 / 2 atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of 29 Al and electric quadrupole moments of 29 , 30 Al. A potentially reduced charge radius at N = 19 may suggest an effect of the N = 20 shell closure, which is visible in the Al chain, contrary to other isotopic chains in the sd shell. The experimental results are compared with theoretical calculations in the framework of the valence-space in-medium similarity renormalization group using multiple sets of two- and three-nucleon forces from chiral effective field theory. While the trend of experimental magnetic dipole and electric quadrupole moments is well reproduced, the absolute values are underestimated by theory, which is consistent with earlier studies. Moreover, both the scale and trend of the charge radii appear to be very sensitive to the chosen interaction.

[1]  A. Schwenk,et al.  Ab initio limits of atomic nuclei , 2019, 1905.10475.

[2]  N. Shimizu,et al.  Ab initio multishell valence-space Hamiltonians and the island of inversion , 2020, 2004.12969.

[3]  J. Billowes,et al.  Charge Radius of the Short-Lived ^{68}Ni and Correlation with the Dipole Polarizability. , 2020, Physical review letters.

[4]  V. Manea,et al.  First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers. , 2020, Physical review letters.

[5]  W. Nazarewicz,et al.  Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes , 2019, Nature Physics.

[6]  T. Miyazaki,et al.  78Ni revealed as a doubly magic stronghold against nuclear deformation , 2019, Nature.

[7]  S. Quaglioni,et al.  Discrepancy between experimental and theoretical β-decay rates resolved from first principles , 2019, Nature Physics.

[8]  S. Bogner,et al.  Nonempirical Interactions for the Nuclear Shell Model: An Update , 2019, Annual Review of Nuclear and Particle Science.

[9]  Yutaka Utsuno,et al.  Thick-restart block Lanczos method for large-scale shell-model calculations , 2019, Comput. Phys. Commun..

[10]  Juergen Thomas,et al.  Nuclear moments of the low-lying isomeric 1+ state of 34Al: Investigation on the neutron 1p1h excitation across N = 20 in the island of inversion , 2018 .

[11]  J. Henderson,et al.  Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of 22Mg , 2017, Physics Letters B.

[12]  R. Roth,et al.  Structure of the Lightest Tin Isotopes. , 2017, Physical review letters.

[13]  Kevin M. Lynch,et al.  Analysis of counting data: Development of the SATLAS Python package , 2018, Comput. Phys. Commun..

[14]  S. Bogner,et al.  Ab initio electromagnetic observables with the in-medium similarity renormalization group , 2017, 1705.05511.

[15]  K. Flanagan,et al.  Collinear laser spectroscopy at ISOLDE: new methods and highlights , 2017 .

[16]  A. Schwenk,et al.  Saturation with chiral interactions and consequences for finite nuclei , 2017, 1704.02915.

[17]  B. Jonson,et al.  ISOLDE past, present and future , 2017 .

[18]  S. Bogner,et al.  Nucleus-Dependent Valence-Space Approach to Nuclear Structure. , 2016, Physical review letters.

[19]  S. Fritzsche,et al.  Multiconfiguration calculations of electronic isotope shift factors in Al i , 2016, 1708.08347.

[20]  H. Hergert,et al.  Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces. , 2016, Physical review letters.

[21]  W. Nazarewicz,et al.  Unexpectedly large charge radii of neutron-rich calcium isotopes , 2016, Nature Physics.

[22]  W. Nazarewicz,et al.  Neutron and weak-charge distributions of the 48Ca nucleus , 2015, Nature Physics.

[23]  J. Menendez,et al.  Exploring s d -shell nuclei from two- and three-nucleon interactions with realistic saturation properties , 2015, 1508.05040.

[24]  M. Pearson,et al.  Laser spectroscopy for nuclear structure physics , 2016 .

[25]  S. Bogner,et al.  The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei , 2015, 1512.06956.

[26]  T. Rauch,et al.  Observation of a crossover of S2n in the island of inversion from precision mass spectrometry , 2015 .

[27]  S. Bogner,et al.  Magnus expansion and in-medium similarity renormalization group , 2015 .

[28]  A. Antušek,et al.  Absolute shielding scales for Al, Ga, and In and revised nuclear magnetic dipole moments of (27)Al, (69)Ga, (71)Ga, (113)In, and (115)In nuclei. , 2015, The Journal of chemical physics.

[29]  J. Menendez,et al.  Ground-state electromagnetic moments of calcium isotopes , 2015, 1504.04474.

[30]  W. Nazarewicz,et al.  Accurate nuclear radii and binding energies from a chiral interaction , 2015, 1502.04682.

[31]  R. Furnstahl,et al.  The Magnus expansion and the in-medium similarity renormalization group , 2014, 1507.06725.

[32]  S. Bogner,et al.  Nonperturbative shell-model interactions from the in-medium similarity renormalization group. , 2014, Physical review letters.

[33]  M. Bissell,et al.  Nuclear charge radii of potassium isotopes beyond N = 28 , 2013, 1310.5171.

[34]  C. Geppert,et al.  Nuclear Charge Radii of Light Elements and Recent Developments in Collinear Laser Spectroscopy , 2014 .

[35]  M. D. Rydt,et al.  Evaluation of the ground-state quadrupole moments of the π(sd) nuclei , 2013 .

[36]  Steven C. Pieper,et al.  Quantum Monte Carlo calculations of electromagnetic moments and transitions in A 9 nuclei with meson-exchange currents derived from chiral effective field theory , 2012, 1212.3375.

[37]  I. Angeli,et al.  Table of experimental nuclear ground state charge radii: An update , 2013 .

[38]  Bradley Cheal,et al.  Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations , 2012 .

[39]  C. Geppert,et al.  Tests of atomic charge-exchange cells for collinear laser spectroscopy , 2012 .

[40]  S. Bogner,et al.  In-medium similarity renormalization group for open-shell nuclei , 2012, 1203.2515.

[41]  P. Vingerhoets,et al.  Nuclear charge radii of (21-32)Mg. , 2012, Physical review letters.

[42]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[43]  K. Hebeler,et al.  Improved nuclear matter calculations from chiral low-momentum interactions , 2010, 1012.3381.

[44]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[45]  Mats Lindroos,et al.  Off-line commissioning of the ISOLDE cooler , 2008 .

[46]  K. Blaum,et al.  Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28 , 2008 .

[47]  S. A. Pahlovy,et al.  Hyperfine interaction of 25Al in α-Al2O3 and its quadrupole moment , 2007 .

[48]  A. Yoshimi,et al.  Measurement of the electric quadrupole moment of 32Al , 2007 .

[49]  K. Flanagan,et al.  G factors of 31,32,33Al : Indication for intruder configurations in the 33Al ground state , 2006 .

[50]  K. Kratz,et al.  On-line yields obtained with the ISOLDE RILIS , 2003 .

[51]  B. A. Brown,et al.  Beta decay studies of nuclei near 32Mg: Investigating the ν(f7/2)–(d3/2) inversion at the N=20 shell closure , 2002 .

[52]  P. Pyykkö,et al.  ELECTRIC QUADRUPOLE MOMENT OF THE 27AL NUCLEUS : CONVERGING RESULTS FROM THE ALF AND ALCL MOLECULES AND THE AL ATOM , 1999 .

[53]  A. Ynnerman,et al.  Reanalysis of the isotope shift and nuclear charge radii in radioactive potassium isotopes , 1990 .

[54]  C. Vries,et al.  Nuclear charge-density-distribution parameters from elastic electron scattering , 1987 .

[55]  K. Niemax,et al.  High-Resolution Laser Spectroscopy of Aluminium, Gallium and Thallium , 1987 .

[56]  H. Duong,et al.  Na+-Na charge exchange processes studied by collinear laser spectroscopy , 1986 .

[57]  F. Touchard,et al.  Electric quadrupole moments and isotope shifts of radioactive sodium isotopes , 1982 .

[58]  T. Minamisono,et al.  Measurement of the magnetic moment of the short-lived β-emitter 28Al polarized by means of the overhauser effect in Li metal , 1981 .

[59]  F. Touchard,et al.  Spins, magnetic moments, and isotope shifts of Na 2 1 − 3 1 by high resolution laser spectroscopy of the atomic D 1 line , 1978 .

[60]  G. Fey,et al.  Nuclear Rms charge radii from relative electron scattering measurements at low energies , 1973 .

[61]  G. Bishop,et al.  The scattering of high-energy electrons by 27Al , 1967 .