Multivariate pattern analysis of MEG and EEG: a comparison of representational structure in time and space

Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in early visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.

[1]  Paul E. Hamburger,et al.  On an automated method , 1966, ACM '66.

[2]  A. Fokas,et al.  Electro–magneto-encephalography for a three-shell model: distributed current in arbitrary, spherical and ellipsoidal geometries , 2009, Journal of The Royal Society Interface.

[3]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[4]  Dimitrios Pantazis,et al.  Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks , 2015, NeuroImage.

[5]  Nikolaus Kriegeskorte,et al.  The evolving representation of objects in the human brain. , 2012 .

[6]  Nikolaus Kriegeskorte,et al.  Visual representations are dominated by intrinsic fluctuations correlated between areas , 2015, NeuroImage.

[7]  L. Garnero,et al.  Combined MEG and EEG source imaging by minimization of mutual information , 1999, IEEE Transactions on Biomedical Engineering.

[8]  Antonio Torralba,et al.  Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence , 2016, Scientific Reports.

[9]  M. E. Spencer,et al.  A Study of Dipole Localization Accuracy for MEG and EEG using a Human Skull Phantom , 1998, NeuroImage.

[10]  Alexander Borst,et al.  How does Nature Program Neuron Types? , 2008, Front. Neurosci..

[11]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[12]  Zeb Kurth-Nelson,et al.  Fast Sequences of Non-spatial State Representations in Humans , 2016, Neuron.

[13]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[14]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[15]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[16]  H Hosaka,et al.  Part II: magnetic field produced by a current dipole. , 1976, Journal of electrocardiology.

[17]  Dimitrios Pantazis,et al.  Similarity-based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex during visual object recognition , 2015 .

[18]  Richard M. Leahy,et al.  A comparison of random field theory and permutation methods for the statistical analysis of MEG data , 2005, NeuroImage.

[19]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[20]  Sennay Ghebreab,et al.  From Image Statistics to Scene Gist: Evoked Neural Activity Reveals Transition from Low-Level Natural Image Structure to Scene Category , 2013, The Journal of Neuroscience.

[21]  Joel Z. Leibo,et al.  The dynamics of invariant object recognition in the human visual system. , 2014, Journal of neurophysiology.

[22]  S. Yantis,et al.  Cortical mechanisms of feature-based attentional control. , 2003, Cerebral cortex.

[23]  Roger B. H. Tootell,et al.  The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex , 2007, NeuroImage.

[24]  A. Norcia,et al.  A Representational Similarity Analysis of the Dynamics of Object Processing Using Single-Trial EEG Classification , 2015, PloS one.

[25]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[26]  Frank Tong,et al.  Representational Dynamics of Facial Viewpoint Encoding , 2017, Journal of Cognitive Neuroscience.

[27]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[28]  Omar H. Butt,et al.  The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology , 2012, Current Biology.

[29]  M Wagner,et al.  Improving source reconstructions by combining bioelectric and biomagnetic data. , 1998, Electroencephalography and clinical neurophysiology.

[30]  David D. Cox,et al.  Opinion TRENDS in Cognitive Sciences Vol.11 No.8 Untangling invariant object recognition , 2022 .

[31]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[32]  D. Cohen,et al.  Demonstration of useful differences between magnetoencephalogram and electroencephalogram. , 1983, Electroencephalography and clinical neurophysiology.

[33]  D. Cohen,et al.  Comparison of the magnetoencephalogram and electroencephalogram. , 1979, Electroencephalography and clinical neurophysiology.

[34]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[35]  S. Dehaene,et al.  Time-Resolved Decoding of Two Processing Chains during Dual-Task Interference , 2015, Neuron.

[36]  Karl J. Friston,et al.  MEG and EEG data fusion: Simultaneous localisation of face-evoked responses , 2009, NeuroImage.

[37]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[38]  R. Henson,et al.  Electrophysiological and haemodynamic correlates of face perception, recognition and priming. , 2003, Cerebral cortex.

[39]  P. Rossini,et al.  Multimodal integration of EEG and MEG data: A simulation study with variable signal‐to‐noise ratio and number of sensors , 2004, Human brain mapping.

[40]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[41]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[42]  Seppo P. Ahlfors,et al.  Superadditive Information from Simultaneous MEG/EEG Data , 2000 .

[43]  Dimitrios Pantazis,et al.  Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition , 2015, bioRxiv.

[44]  Jeffrey L. Elman,et al.  A novel integrated MEG and EEG analysis method for dipolar sources , 2007, NeuroImage.

[45]  S. Taulu,et al.  Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements , 2006, Physics in medicine and biology.

[46]  S. Dehaene,et al.  Characterizing the dynamics of mental representations: the temporal generalization method , 2014, Trends in Cognitive Sciences.

[47]  L. Tyler,et al.  Predicting the Time Course of Individual Objects with MEG , 2014, Cerebral cortex.

[48]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[49]  M. S. Hämäläinen,et al.  Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation , 2008, NeuroImage.

[50]  Tomoyuki Nakahori,et al.  Benefit of Simultaneous Recording of EEG and MEG in Dipole Localization , 2002, Epilepsia.

[51]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[52]  Tandra Ghose,et al.  Generalization between canonical and non-canonical views in object recognition. , 2013, Journal of vision.

[53]  David A. Tovar,et al.  Representational dynamics of object vision: the first 1000 ms. , 2013, Journal of vision.