Is There an Analog of Nesterov Acceleration for MCMC?

We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the space of probability measures, with Kullback-Leibler (KL) divergence as the objective functional. We show that an underdamped form of the Langevin algorithm performs accelerated gradient descent in this metric. To characterize the convergence of the algorithm, we construct a Lyapunov functional and exploit hypocoercivity of the underdamped Langevin algorithm. As an application, we show that accelerated rates can be obtained for a class of nonconvex functions with the Langevin algorithm.

[1]  P. Mazur On the theory of brownian motion , 1959 .

[2]  J. D. Doll,et al.  Brownian dynamics as smart Monte Carlo simulation , 1978 .

[3]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[4]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[5]  H. Peters,et al.  Convex functions on non-convex domains , 1986 .

[6]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[7]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[8]  G. Roberts,et al.  Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .

[9]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[10]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[11]  C. Villani Optimal Transport: Old and New , 2008 .

[12]  Simone Calogero,et al.  Exponential Convergence to Equilibrium for Kinetic Fokker-Planck Equations , 2010, 1009.5086.

[13]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[14]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[15]  M. Yan Extension of Convex Function , 2012, 1207.0944.

[16]  N. Pillai,et al.  A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.

[17]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[18]  A. Dalalyan Theoretical guarantees for approximate sampling from smooth and log‐concave densities , 2014, 1412.7392.

[19]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[20]  Tianqi Chen,et al.  A Complete Recipe for Stochastic Gradient MCMC , 2015, NIPS.

[21]  É. Moulines,et al.  Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm , 2015, 1507.05021.

[22]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.

[23]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[24]  Yang Song,et al.  Stochastic Gradient Geodesic MCMC Methods , 2016, NIPS.

[25]  É. Moulines,et al.  Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm , 2016 .

[26]  Michael I. Jordan,et al.  A Lyapunov Analysis of Momentum Methods in Optimization , 2016, ArXiv.

[27]  BENEDICT LEIMKUHLER,et al.  Adaptive Thermostats for Noisy Gradient Systems , 2015, SIAM J. Sci. Comput..

[28]  Oren Mangoubi,et al.  Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions , 2017, 1708.07114.

[29]  Nisheeth K. Vishnoi,et al.  Dimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo , 2018, NeurIPS.

[30]  Michael I. Jordan,et al.  On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo , 2018, ICML.

[31]  Michael I. Jordan,et al.  Underdamped Langevin MCMC: A non-asymptotic analysis , 2017, COLT.

[32]  Peter L. Bartlett,et al.  Convergence of Langevin MCMC in KL-divergence , 2017, ALT.

[33]  Aryan Mokhtari,et al.  Direct Runge-Kutta Discretization Achieves Acceleration , 2018, NeurIPS.

[34]  Ohad Shamir,et al.  Global Non-convex Optimization with Discretized Diffusions , 2018, NeurIPS.

[35]  Mert Gürbüzbalaban,et al.  Breaking Reversibility Accelerates Langevin Dynamics for Global Non-Convex Optimization , 2018, NIPS 2018.

[36]  Andre Wibisono,et al.  Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem , 2018, COLT.

[37]  Nisheeth K. Vishnoi,et al.  Dimensionally Tight Running Time Bounds for Second-Order Hamiltonian Monte Carlo , 2018, ArXiv.

[38]  Michael I. Jordan,et al.  Sharp Convergence Rates for Langevin Dynamics in the Nonconvex Setting , 2018, ArXiv.

[39]  Arnak S. Dalalyan,et al.  On sampling from a log-concave density using kinetic Langevin diffusions , 2018, Bernoulli.

[40]  Martin J. Wainwright,et al.  Log-concave sampling: Metropolis-Hastings algorithms are fast! , 2018, COLT.

[41]  Arnak S. Dalalyan,et al.  User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient , 2017, Stochastic Processes and their Applications.

[42]  P. Fearnhead,et al.  The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.

[43]  Michael I. Jordan,et al.  Sampling can be faster than optimization , 2018, Proceedings of the National Academy of Sciences.

[44]  Michael I. Jordan,et al.  Acceleration via Symplectic Discretization of High-Resolution Differential Equations , 2019, NeurIPS.

[45]  Alain Durmus,et al.  High-dimensional Bayesian inference via the unadjusted Langevin algorithm , 2016, Bernoulli.

[46]  Lei Wu,et al.  Irreversible samplers from jump and continuous Markov processes , 2016, Stat. Comput..

[47]  A. Eberle,et al.  Coupling and convergence for Hamiltonian Monte Carlo , 2018, The Annals of Applied Probability.