Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials

[1]  Wei Li,et al.  Tailorable Lignocellulose-Based Aerogel to Achieve the Balance between Evaporation Enthalpy and Water Transport Rate for Efficient Solar Evaporation. , 2023, ACS applied materials & interfaces.

[2]  Shuangfei Wang,et al.  Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications , 2023, Nano Energy.

[3]  J. J. Valle-Delgado,et al.  Biobased Nanomaterials—The Role of Interfacial Interactions for Advanced Materials , 2023, Chemical reviews.

[4]  Chengrong Qin,et al.  Polydopamine-Reinforced Hemicellulose-Based Multifunctional Flexible Hydrogels for Human Movement Sensing and Self-Powered Transdermal Drug Delivery. , 2023, ACS applied materials & interfaces.

[5]  S. Eichhorn,et al.  Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment , 2023, Chemical reviews.

[6]  Yuanxiang Zhou,et al.  Improved electrical treeing properties of silicone rubber at high temperatures by grafting aromatic hydrocarbon voltage stabilizer , 2022, Polymer Degradation and Stability.

[7]  Sang‐Woo Kim,et al.  Ultrasound‐Driven On‐Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity , 2022, Advanced science.

[8]  Shuangfei Wang,et al.  Wearable Triboelectric Visual Sensors for Tactile Perception , 2022, Advanced materials.

[9]  Sang‐Woo Kim,et al.  Design Principles to Maximize Non‐Bonding States for Highly Tribopositive Behavior , 2022, Advanced Functional Materials.

[10]  Yanhua Liu,et al.  Sustainable Triboelectric Materials for Smart Active Sensing Systems , 2022, Advanced Functional Materials.

[11]  Chengrong Qin,et al.  Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. , 2022, International journal of biological macromolecules.

[12]  Shuangxi Nie,et al.  Triboelectric pulsed direct current for self-powered sterilization of cellulose fiber , 2022, Cellulose.

[13]  Jilong Mo,et al.  Hierarchical Porous Cellulosic Triboelectric Materials for Extreme Environmental Conditions , 2022, Small methods.

[14]  Jilong Mo,et al.  Spheres Multiple Physical Network-Based Triboelectric Materials for Self-Powered Contactless Sensing. , 2022, Small.

[15]  D. Futaba,et al.  Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications , 2022, Advanced materials.

[16]  Jinping Zhou,et al.  Electronic skin based on cellulose/KCl/sorbitol organohydrogel. , 2022, Carbohydrate polymers.

[17]  H. N. Bhargaw,et al.  Review on engineering designing of electromagnetic interference shielding materials using additive manufacturing , 2022, Polymer Composites.

[18]  Shuangfei Wang,et al.  Stretchable Triboelectric Self‐Powered Sweat Sensor Fabricated from Self‐Healing Nanocellulose Hydrogels , 2022, Advanced Functional Materials.

[19]  S. Vignolini,et al.  Fast Self-Assembly of Scalable Photonic Cellulose Nanocrystal and Hybrid Films via Electrophoresis. , 2022, Advances in Materials.

[20]  Baolin Guo,et al.  Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering , 2021, Nano-Micro Letters.

[21]  Wenxia Liu,et al.  Fabrication of Polyethyleneimine-Paper Composites with Improved Tribopositivity for Triboelectric Nanogenerators , 2021, SSRN Electronic Journal.

[22]  Shuangfei Wang,et al.  Advanced triboelectric materials for liquid energy harvesting and emerging application , 2021, Materials Today.

[23]  Haisong Qi,et al.  Cellulose Melt Processing Assisted by Small Biomass Molecule to Fabricate Recyclable Ionogels for Versatile Stretchable Triboelectric Nanogenerators , 2021, Nano Energy.

[24]  A. Larsson,et al.  Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. , 2021, Advances in colloid and interface science.

[25]  Y. Long,et al.  Recent advances in cellulose-based flexible triboelectric nanogenerators , 2021 .

[26]  Nishuang Liu,et al.  MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances , 2021 .

[27]  T. Walsh,et al.  Dynamical Water Ingress and Dissolution at the Amorphous-Crystalline Cellulose Interface. , 2021, Biomacromolecules.

[28]  Lina Zhang,et al.  Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. , 2021, Carbohydrate polymers.

[29]  Tae Yun Kim,et al.  Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators , 2021, Nature Communications.

[30]  Taesung Kim,et al.  Triboelectric Nanogenerator‐Based Sensor Systems for Chemical or Biological Detection , 2021, Advanced materials.

[31]  Alan M. Wemyss,et al.  Challenges and Opportunities of Self‐Healing Polymers and Devices for Extreme and Hostile Environments , 2021, Advanced materials.

[32]  M. Bonn,et al.  Water at charged interfaces , 2021, Nature Reviews Chemistry.

[33]  Zhong Lin Wang,et al.  Contact Electrification at the Liquid-Solid Interface. , 2021, Chemical reviews.

[34]  Zhong Lin Wang,et al.  Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing , 2021 .

[35]  Yan Li,et al.  Effect of surface charge density of bacterial cellulose nanofibrils on the rheology property of O/W Pickering emulsions , 2021 .

[36]  H. Hwang,et al.  Designable Skin-like Triboelectric Nanogenerators Using Layer-by-Layer Self-Assembled Polymeric Nanocomposites , 2021 .

[37]  N. Marzari,et al.  Electronic-structure methods for materials design , 2021, Nature Materials.

[38]  Q. Wei,et al.  All-Fiber-Structured Triboelectric Nanogenerator via One-Pot Electrospinning for Self-Powered Wearable Sensors. , 2021, ACS applied materials & interfaces.

[39]  Shuangfei Wang,et al.  Improved Capture and Removal Efficiency of Gaseous Acetaldehyde by a Self-Powered Photocatalytic System with an External Electric Field. , 2021, ACS nano.

[40]  Alistair W. T. King,et al.  Unique reactivity of nanoporous cellulosic materials mediated by surface-confined water , 2021, Nature Communications.

[41]  Shuangfei Wang,et al.  Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment , 2021 .

[42]  M. Hubbe,et al.  Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications , 2021, Advanced materials.

[43]  Laila Hossain,et al.  Effect of the counter-ion on nanocellulose hydrogels and their superabsorbent structure and properties. , 2021, Journal of Colloid and Interface Science.

[44]  Tiina Nypelö,et al.  Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy , 2021, ACS nano.

[45]  Liangbing Hu,et al.  Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. , 2021, ACS nano.

[46]  J. Dai,et al.  Developing fibrillated cellulose as a sustainable technological material , 2021, Nature.

[47]  Shuangfei Wang,et al.  Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity , 2021 .

[48]  Yeon Sik Choi,et al.  Materials‐Related Strategies for Highly Efficient Triboelectric Energy Generators , 2021, Advanced Energy Materials.

[49]  Zhong Lin Wang,et al.  Triboelectric nanogenerators for human-health care. , 2020, Science bulletin.

[50]  T. Lu,et al.  Materials design by synthetic biology , 2020, Nature Reviews Materials.

[51]  Shuangfei Wang,et al.  Chemically Functionalized Cellulose Nanofibrils for Improving Triboelectric Charge Density of a Triboelectric Nanogenerator , 2020, ACS Sustainable Chemistry & Engineering.

[52]  Shuangfei Wang,et al.  Radial piston triboelectric nanogenerator-enhanced cellulose fiber air filter for self-powered particulate matter removal , 2020 .

[53]  Dongping Sun,et al.  Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose. , 2020, ACS applied materials & interfaces.

[54]  Zhong Lin Wang,et al.  Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications. , 2020, ACS nano.

[55]  Shuangfei Wang,et al.  Enhancement of Triboelectric Charge Density by Chemical Functionalization , 2020, Advanced Functional Materials.

[56]  H. Yano,et al.  Surface and Interface Engineering for Nanocellulosic Advanced Materials , 2020, Advanced materials.

[57]  X. Jia,et al.  From Space to Battlefield: A New Breed of Multifunctional Fiber Sheets for Extreme Environments , 2020 .

[58]  Jingjing Zhu,et al.  Eco-friendly Porous nanocomposite fabric-based Triboelectric Nanogenerator for efficient energy harvesting and motion sensing. , 2020, ACS applied materials & interfaces.

[59]  Zhong Lin Wang,et al.  Superhydrophobic Cellulose Paper‐Based Triboelectric Nanogenerator for Water Drop Energy Harvesting , 2020, Advanced Materials Technologies.

[60]  Yuan Hu,et al.  Nacre-Inspired Black Phosphorus/Nanofibrillar Cellulose Composite Film with Enhanced Mechanical Properties and Superior Fire Resistance. , 2020, ACS applied materials & interfaces.

[61]  R. Spontak,et al.  Shear-dependent Structures of Flocculated Micro/Nanofibrillated Cellulose (MFNC) in Aqueous Suspensions. , 2020, Biomacromolecules.

[62]  Lina Zhang,et al.  Recent Progress in High‐Strength and Robust Regenerated Cellulose Materials , 2020, Advanced materials.

[63]  B. D. Mattos,et al.  Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels , 2020, Advanced materials.

[64]  C. Koo,et al.  2D MXenes for Electromagnetic Shielding: A Review , 2020, Advanced Functional Materials.

[65]  Wenshuai Chen,et al.  Cellulose‐Based Flexible Functional Materials for Emerging Intelligent Electronics , 2020, Advanced materials.

[66]  C. Xiong,et al.  Transparent and flexible cellulose dielectric films with high breakdown strength and energy density , 2020 .

[67]  Hyun-U Ko,et al.  Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator , 2020 .

[68]  T. Mekonnen,et al.  Cationic surfactant modified cellulose nanocrystals for corrosion protective nanocomposite surface coatings , 2020 .

[69]  Momoh Karmah Mbogba,et al.  Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators , 2020 .

[70]  Hugh Alan Bruck,et al.  A printed, recyclable, ultra-strong, and ultra-tough graphite structural material , 2019, Materials Today.

[71]  Hong-Joon Yoon,et al.  Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology , 2019, Science.

[72]  Sang‐Woo Kim,et al.  Highly Conductive Ferroelectric Cellulose Composite Papers for Efficient Triboelectric Nanogenerators , 2019, Advanced Functional Materials.

[73]  Troy Shinbrot,et al.  Long-standing and unresolved issues in triboelectric charging , 2019, Nature Reviews Chemistry.

[74]  Hongsheng Luo,et al.  Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor , 2019, Nano Energy.

[75]  Jaehwan Kim,et al.  Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields , 2019, Cellulose.

[76]  Aurelia Chi Wang,et al.  On the origin of contact-electrification , 2019, Materials Today.

[77]  Venkateswaran Vivekananthan,et al.  A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code , 2019, Nano Energy.

[78]  A. Kumaravel,et al.  Assessment of cellulose in bark fibers of Thespesia populnea: Influence of stem maturity on fiber characterization. , 2019, Carbohydrate polymers.

[79]  S. B. Lindström,et al.  Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions—Suitable Substrates for Biointerfaces , 2019, Advanced Materials Interfaces.

[80]  M. Kharaziha,et al.  An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper , 2019, Nano Energy.

[81]  Maher F. El-Kady,et al.  Fire-retardant, self-extinguishing triboelectric nanogenerators , 2019, Nano Energy.

[82]  J. Faraudo,et al.  Molecular insight into the wetting behavior and amphiphilic character of cellulose nanocrystals. , 2019, Advances in colloid and interface science.

[83]  Liwei Lin,et al.  Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite , 2019, Chemical Engineering Journal.

[84]  S. Hatzikiriakos,et al.  Freeze-Thaw Gelation of Cellulose Nanocrystals. , 2019, ACS macro letters.

[85]  Aifang Yu,et al.  Humidity‐Resistive Triboelectric Nanogenerator Fabricated Using Metal Organic Framework Composite , 2019, Advanced Functional Materials.

[86]  Jianwei Song,et al.  Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting , 2019, Nature Materials.

[87]  Feng Li,et al.  A Desolvated Solid–Solid Interface for a High‐Capacitance Electric Double Layer , 2019, Advanced Energy Materials.

[88]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[89]  A. Isogai,et al.  Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions , 2018, Progress in Polymer Science.

[90]  Kaushik Parida,et al.  Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting , 2018, Nature Communications.

[91]  Zhong Lin Wang,et al.  A Hierarchically Nanostructured Cellulose Fiber‐Based Triboelectric Nanogenerator for Self‐Powered Healthcare Products , 2018, Advanced Functional Materials.

[92]  Ning Lin,et al.  Triazole End-Grafting on Cellulose Nanocrystals for Water-Redispersion Improvement and Reactive Enhancement to Nanocomposites , 2018, ACS Sustainable Chemistry & Engineering.

[93]  Yijun Jiang,et al.  Insights into the Inhibition of Acidic Hydrolysis of Cellulose by Its Solation , 2018, ACS Sustainable Chemistry & Engineering.

[94]  Jia Huang,et al.  Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors , 2018, Nature Communications.

[95]  Weihong Yang,et al.  Mechanisms of Formation of H, HO, and Water and of Water Desorption in the Early Stages of Cellulose Pyrolysis , 2018 .

[96]  Per Tomas Larsson,et al.  Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. , 2018, ACS nano.

[97]  Q. Fu,et al.  Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix , 2018 .

[98]  Zhuo Kang,et al.  Electromagnetic Shielding Hybrid Nanogenerator for Health Monitoring and Protection , 2018 .

[99]  W. Batchelor,et al.  Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective. , 2018, Journal of colloid and interface science.

[100]  Dan Yu,et al.  Pressure responsive PET fabrics via constructing conductive wrinkles at room temperature , 2017 .

[101]  P. Fischer,et al.  Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions. , 2017, Biomacromolecules.

[102]  Bin Ding,et al.  Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting , 2017 .

[103]  Kun Fu,et al.  Super‐Strong, Super‐Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers , 2017, Advanced materials.

[104]  Ping Liu,et al.  Enhanced Toughness and Thermal Stability of Cellulose Nanocrystal Iridescent Films by Alkali treatment , 2017 .

[105]  J. Joannopoulos,et al.  Thermally-drawn fibers with spatially-selective porous domains , 2017, Nature Communications.

[106]  Changyou Shao,et al.  High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. , 2017, ACS applied materials & interfaces.

[107]  Zhong Lin Wang,et al.  Achieving ultrahigh triboelectric charge density for efficient energy harvesting , 2017, Nature Communications.

[108]  Zhiyong Cai,et al.  Chemically Functionalized Natural Cellulose Materials for Effective Triboelectric Nanogenerator Development , 2017 .

[109]  J. Stokes,et al.  Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods. , 2017, Journal of colloid and interface science.

[110]  P. Ball Water is an active matrix of life for cell and molecular biology , 2017, Proceedings of the National Academy of Sciences.

[111]  E. Cranston,et al.  The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids , 2017 .

[112]  E. Cranston,et al.  Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[113]  Nitesh Mittal,et al.  Flow-assisted assembly of nanostructured protein microfibers , 2017, Proceedings of the National Academy of Sciences.

[114]  Y. Noguchi,et al.  Complete nanofibrillation of cellulose prepared by phosphorylation , 2017, Cellulose.

[115]  Tae Yun Kim,et al.  Boosting Power‐Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties , 2017 .

[116]  Shurong Dong,et al.  Transparent triboelectric generators based on glass and polydimethylsiloxane , 2016 .

[117]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[118]  M. Skepö,et al.  Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts , 2016, Cellulose.

[119]  Jie Wang,et al.  Sustainably powering wearable electronics solely by biomechanical energy , 2016, Nature Communications.

[120]  K. Yager,et al.  Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[121]  Francois Barthelat,et al.  Structure and mechanics of interfaces in biological materials , 2016 .

[122]  Yunlong Zi,et al.  All‐Plastic‐Materials Based Self‐Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors , 2016 .

[123]  J. Bras,et al.  Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. , 2016, Carbohydrate polymers.

[124]  J. Duval,et al.  Influence of ionic strength and polyelectrolyte concentration on the electrical conductivity of suspensions of soft colloidal polysaccharides. , 2015, Journal of colloid and interface science.

[125]  S. Maier,et al.  How Does Water Wet a Surface? , 2015, Accounts of chemical research.

[126]  V. Kokol,et al.  Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents. , 2015, Journal of hazardous materials.

[127]  Zheng Jia,et al.  Anomalous scaling law of strength and toughness of cellulose nanopaper , 2015, Proceedings of the National Academy of Sciences.

[128]  Zhong Lin Wang,et al.  Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments. , 2015, ACS nano.

[129]  Ren Zhu,et al.  Environmental effects on nanogenerators , 2015 .

[130]  Qinglin Wu,et al.  Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships , 2015 .

[131]  Zhong Lin Wang,et al.  Theory of freestanding triboelectric-layer-based nanogenerators , 2015 .

[132]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[133]  Y. Nishio,et al.  Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields. , 2014, Biomacromolecules.

[134]  Jie Chen,et al.  Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. , 2014, ACS applied materials & interfaces.

[135]  S. Hatzikiriakos,et al.  Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions , 2014, Cellulose.

[136]  Junyong Zhu,et al.  Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs) , 2014 .

[137]  Z. Ounaies,et al.  Electric field alignment of nanofibrillated cellulose (NFC) in silicone oil: impact on electrical properties. , 2014, ACS applied materials & interfaces.

[138]  Anna Corinna Cagliano,et al.  Current trends in Smart City initiatives: some stylised facts , 2014 .

[139]  Sihong Wang,et al.  Theoretical Investigation and Structural Optimization of Single‐Electrode Triboelectric Nanogenerators , 2014 .

[140]  D. Gray,et al.  Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate , 2014, Cellulose.

[141]  M. Tajvidi,et al.  Strong highly anisotropic magnetocellulose nanocomposite films made by chemical peeling and in situ welding at the interface using an ionic liquid. , 2014, ACS applied materials & interfaces.

[142]  Hong Dong,et al.  DFT study of metal cation-induced hydrogelation of cellulose nanofibrils , 2014, Cellulose.

[143]  Simiao Niu,et al.  Nanometer Resolution Self‐Powered Static and Dynamic Motion Sensor Based on Micro‐Grated Triboelectrification , 2014, Advanced materials.

[144]  Ruomeng Yu,et al.  Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. , 2014, ACS applied materials & interfaces.

[145]  A. Isogai,et al.  Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition , 2014, Cellulose.

[146]  Zhong Lin Wang,et al.  Theoretical study of contact-mode triboelectric nanogenerators as an effective power source , 2013 .

[147]  A. Isogai,et al.  Effects of carboxyl-group counter-ions on biodegradation behaviors of TEMPO-oxidized cellulose fibers and nanofibril films , 2013, Cellulose.

[148]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[149]  Zhong Lin Wang,et al.  Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. , 2013, Nano letters.

[150]  Zhong Lin Wang,et al.  Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. , 2013, Nano letters.

[151]  Wei Wang,et al.  Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. , 2013, Nano letters.

[152]  D. Cho,et al.  Improving mechanical properties of alginate hydrogel by reinforcement with ethanol treated polycaprolactone nanofibers , 2013 .

[153]  D. Gray,et al.  Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis , 2013, Cellulose.

[154]  Qi Zhou,et al.  Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes , 2013 .

[155]  P. Ghosh,et al.  The Electroviscous Effect at Fluid–Fluid Interfaces , 2013 .

[156]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[157]  Alain Dufresne,et al.  Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. , 2012, Nanoscale.

[158]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[159]  E. Ureña-Benavides,et al.  Rheology and Phase Behavior of Lyotropic Cellulose Nanocrystal Suspensions , 2011 .

[160]  Honglai Liu,et al.  Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective , 2011 .

[161]  O. Ikkala,et al.  Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. , 2011, Biomacromolecules.

[162]  P. Gatenholm,et al.  Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[163]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[164]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[165]  David I. Spivak,et al.  Category Theoretic Analysis of Hierarchical Protein Materials and Social Networks , 2011, PloS one.

[166]  R. Venditti,et al.  Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. , 2010, Biomacromolecules.

[167]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[168]  D. López,et al.  Reversible stress softening and stress recovery of cellulose networks , 2009 .

[169]  D. Harper,et al.  Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. , 2009, Macromolecular bioscience.

[170]  Xuefei Zhang,et al.  Temperature-induced chiral nematic phase changes of suspensions of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals , 2009 .

[171]  Chia-Ming Wu,et al.  Effect of chemical structure and shear force on the morphology and properties of jet printed black micropatterns using imide epoxy binders , 2009 .

[172]  P. Chang,et al.  A novel thermoformable bionanocomposite based on cellulose nanocrystal-graft-poly(e-caprolactone) , 2009 .

[173]  P. Dubois,et al.  Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization , 2008 .

[174]  Ayman F. Abouraddy,et al.  Multimaterial Photodetecting Fibers: a Geometric and Structural Study , 2007 .

[175]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[176]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[177]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[178]  M. Vignon,et al.  TEMPO-mediated surface oxidation of cellulose whiskers , 2006 .

[179]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[180]  Fumiko Kimura,et al.  Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[181]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[182]  I. Koyuncu,et al.  Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration: Direct experimental observation of filter cake cross-sections , 2004 .

[183]  Akira Isogai,et al.  TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. , 2004, Biomacromolecules.

[184]  H. Wennerström,et al.  ION–ION CORRELATIONS IN LIQUID DISPERSIONS , 2004 .

[185]  Burak Temelkuran,et al.  External Reflection from Omnidirectional Dielectric Mirror Fibers , 2002, Science.

[186]  D. Mooney,et al.  Hydrogels for tissue engineering. , 2001, Chemical reviews.

[187]  G. Richmond,et al.  Water at Hydrophobic Surfaces: Weak Hydrogen Bonding and Strong Orientation Effects , 2001, Science.

[188]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[189]  A. Hartmaier,et al.  Controlling factors for the brittle-to-ductile transition in tungsten single crystals , 1998, Science.

[190]  D. C. Clary,et al.  The Water Dipole Moment in Water Clusters , 1997, Science.

[191]  T. Okubo Importance of electrical double layers in structural and diffusional properties of deionized colloidal suspensions , 1996 .

[192]  G. Maret,et al.  Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation , 1994 .

[193]  T. G. M. Ven,et al.  Brownian motion of rod-shaped colloidal particles surrounded by electrical double layers , 1991 .

[194]  S. Marčelja,et al.  Correlation and image charge effects in electric double layers , 1984 .

[195]  H. Wennerström,et al.  Electrical double layer forces: a Monte Carlo study , 1984 .

[196]  R. Hancock,et al.  Parametric correlation of formation constants in aqueous solution. 1. Ligands with small donor atoms , 1978 .

[197]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .