Bayesian inversion of a diffusion evolution equation with application to Biology
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] S. B. Childs,et al. INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .
[3] Y. Marzouk,et al. Large-Scale Inverse Problems and Quantification of Uncertainty , 1994 .
[4] Jorge Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[5] J. Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[6] V. Isakov. Appendix -- Function Spaces , 2017 .
[7] A. Gupta,et al. A Bayesian Approach to , 1997 .
[8] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[9] J. Voss,et al. Analysis of SPDEs arising in path sampling. Part I: The Gaussian case , 2005 .
[10] A. Stuart,et al. ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.
[11] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[12] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[13] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[14] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[15] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[16] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[17] Barbara Kaltenbacher,et al. Regularization Methods in Banach Spaces , 2012, Radon Series on Computational and Applied Mathematics.
[18] A. Stuart,et al. MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.
[19] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[20] Eva Balsa-Canto,et al. Reverse-Engineering Post-Transcriptional Regulation of Gap Genes in Drosophila melanogaster , 2013, PLoS Comput. Biol..
[21] Kody J. H. Law. Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..
[22] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[23] Martin Burger,et al. Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems , 2014, 1412.5816.
[24] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[25] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[26] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[27] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[28] Houman Owhadi,et al. Handbook of Uncertainty Quantification , 2017 .
[29] Martin Burger,et al. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems , 2017, 1705.03286.
[30] Bamdad Hosseini,et al. Well-Posed Bayesian Inverse Problems: Priors with Exponential Tails , 2016, SIAM/ASA J. Uncertain. Quantification.
[31] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[32] Neil D. Lawrence,et al. Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems , 2017, IEEE Transactions on Automatic Control.