A Family of Hyperbolic-Type Explicit Force Regulators with Active Velocity Damping for Robot Manipulators

This paper addresses the explicit force regulation problem for robot manipulators in interaction tasks. A new family of explicit force-control schemes is presented, which includes a term driven by a large class of saturated-type hyperbolic functions to handle the force error. Also, an active velocity damping term with the purpose of obtaining energy dissipation on the contact surface is incorporated plus compensation for gravity. In order to ensure asymptotic stability of the closed-loop system equilibrium point in Cartesian space, we propose a strict Lyapunov function. A force sensor placed at the end-effector of the robot manipulator is used in order to feed back the measure of the force error in the closed-loop, and an experimental comparison of the performance -norm between 5 explicit force control schemes, which are the classical proportional-derivative (PD), arctangent, and square-root controls and two members of the proposed control family, on a two-degree-of-freedom, direct-drive robot manipulator, is presented.

[1]  F. Reyes-Cortés,et al.  On explicit force regulation with active velocity damping for robot manipulators , 2015 .

[2]  Seul Jung,et al.  Robust neural force control scheme under uncertainties in robot dynamics and unknown environment , 2000, IEEE Trans. Ind. Electron..

[3]  R. Kelly,et al.  An adaptive impedance/force controller for robot manipulators , 1991 .

[4]  Kouhei Ohnishi,et al.  On the Explicit Robust Force Control via Disturbance Observer , 2015, IEEE Transactions on Industrial Electronics.

[5]  Neville Hogan,et al.  Impedance control - An approach to manipulation. I - Theory. II - Implementation. III - Applications , 1985 .

[6]  Fernando Reyes-Cortés,et al.  A Dynamic-compensation Approach to Impedance Control of Robot Manipulators , 2011, J. Intell. Robotic Syst..

[7]  Daniel E. Whitney,et al.  Historical Perspective and State of the Art in Robot Force Control , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[8]  Masayoshi Tomizuka,et al.  Learning hybrid force and position control of robot manipulators , 1993, IEEE Trans. Robotics Autom..

[9]  Fernando Reyes,et al.  Proportional–derivative impedance control of robot manipulators for interaction tasks , 2011 .

[10]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[11]  Janan Zaytoon,et al.  Control system design of a 3-DOF upper limbs rehabilitation robot , 2008, Comput. Methods Programs Biomed..

[12]  Simeon P. Patarinski,et al.  Robot force control: A review , 1993 .

[13]  Rogelio Lozano,et al.  Adaptive hybrid force-position control for redundant manipulators , 1990, 29th IEEE Conference on Decision and Control.

[14]  Tsuneo Yoshikawa,et al.  Dynamic hybrid position/force control of robot manipulators-controller design and experiment , 1987, IEEE J. Robotics Autom..

[15]  Rafael Kelly,et al.  On saturated-proportional derivative feedback with adaptive gravity compensation of robot manipulators , 1996 .

[16]  Libor Preucil,et al.  European Robotics Symposium 2008 , 2008 .

[17]  Riccardo Muradore,et al.  A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots , 2016, IEEE/ASME Transactions on Mechatronics.

[18]  Nagarajan Sukavanam,et al.  Neural network based hybrid force/position control for robot manipulators , 2011 .

[19]  Ciro Natale,et al.  Interaction Control of Robot Manipulators: Six degrees-of-freedom tasks , 2003 .

[20]  Nagarajan Sukavanam,et al.  Stability analysis of robust adaptive hybrid position/force controller for robot manipulators using neural network with uncertainties , 2012, Neural Computing and Applications.

[21]  Zoe Doulgeri,et al.  Robot Force/Position Tracking on a Surface of Unknown Orientation , 2008, EUROS.

[22]  Lorenzo Sciavicco,et al.  The parallel approach to force/position control of robotic manipulators , 1993, IEEE Trans. Robotics Autom..

[23]  Ser Yong Lim,et al.  Parallel force and motion control using adaptive observer-controller , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[24]  Ganwen Zeng,et al.  An overview of robot force control , 1997, Robotica.

[25]  Paolo Rocco,et al.  Toward the implementation of hybrid position/force control in industrial robots , 1997, IEEE Trans. Robotics Autom..

[26]  Richard Volpe,et al.  A theoretical and experimental investigation of explicit force control strategies for manipulators , 1993, IEEE Trans. Autom. Control..

[27]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[28]  Jakob Lund Dideriksen,et al.  Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms , 2017, Experimental Brain Research.

[29]  Rajendra Prasad,et al.  Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator , 2016, J. Intell. Manuf..

[30]  Dan O. Popa,et al.  An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments , 1995, IEEE Trans. Robotics Autom..

[31]  Fernando Reyes-Cortés,et al.  Proceedings of the Institution of Mechanical Engineers , Part I : Journal of Systems and Control Engineering , 2012 .

[32]  Seyed Mahdi Hashemi,et al.  Interaction control of an industrial manipulator using LPV techniques , 2013 .

[33]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[34]  Piotr Gierlak,et al.  Adaptive position/force control for robot manipulator in contact with a flexible environment , 2017, Robotics Auton. Syst..

[35]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[36]  Giovanni Muscato,et al.  A roll stabilization system for a monohull ship: modeling, identification, and adaptive control , 1996, IEEE Trans. Control. Syst. Technol..

[37]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[38]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[39]  Christian Ott,et al.  Cartesian Impedance Control of Redundant and Flexible-Joint Robots , 2008, Springer Tracts in Advanced Robotics.

[40]  Bruno Siciliano,et al.  A survey of robot interaction control schemes with experimental comparison , 1999 .

[41]  Fernando Reyes-Cortés,et al.  A Lyapunov-based design tool of impedance controllers for robot manipulators , 2012, Kybernetika.

[42]  O. Boubaker,et al.  Stiffness and Impedance Control Using Lyapunov Theory for Robot-Aided Rehabilitation , 2012, Int. J. Soc. Robotics.

[43]  Carlos A. Cruz-Villar,et al.  An Optimization-Based Impedance Approach for Robot Force Regulation with Prescribed Force Limits , 2015 .

[44]  Zhou Wang,et al.  A position-based Explicit force control Strategy based on Online trajectory Prediction , 2017, Int. J. Robotics Autom..

[45]  Mohammad Danesh,et al.  Adaptive hybrid force/position control of robot manipulators using an adaptive force estimator in the presence of parametric uncertainty , 2015, Adv. Robotics.

[46]  Bai Chen,et al.  Development and hybrid force/position control of a compliant rescue manipulator , 2017 .

[47]  Rui Cortesão,et al.  Robot Force Control on a Beating Heart , 2017, IEEE/ASME Transactions on Mechatronics.

[48]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion , 1986, IEEE J. Robotics Autom..