Modeling the Coevolution of Networks and Behavior

A deeper understanding of the relation between individual behavior and individual actions on one hand and the embeddedness of individuals in social structures on the other hand can be obtained by empirically studying the dynamics of individual outcomes and network structure, and how these mutually affect each other. In methodological terms, this means that behavior of individuals – indicators of performance and success, attitudes and other cognitions, behavioral tendencies – and the ties between them are studied as a social process evolving over time, where behavior and network ties mutually influence each other. We propose a statistical methodology for this type of investigation and illustrate it by an example. ∗We thank the Chief Scientists Office of the Scottish Home and Health Department for permission to use the data of the Teenage Friends and Lifestyle Study. †Research supported by the Netherlands Organization for Scientific Research (NWO) grant 401-01-550. ††Research supported by the Netherlands Organization for Scientific Research (NWO) grant 401-01-551.

[1]  Tom A. B. Snijders,et al.  Markov models for digraph panel data: Monte Carlo-based derivative estimation , 2007, Comput. Stat. Data Anal..

[2]  H. Robbins A Stochastic Approximation Method , 1951 .

[3]  Luciano Rossoni,et al.  Models and methods in social network analysis , 2006 .

[4]  M. Marsili,et al.  Emergence and resilience of social networks : a general theoretical framework. Commentary , 2005, physics/0504124.

[5]  T. Snijders Models for longitudinal network datain , 2005 .

[6]  Tom A. B. Snijders,et al.  Manual for SIENA version 2.1 , 2005 .

[7]  Johan Koskinen,et al.  Essays on Bayesian Inference for Social Networks , 2004 .

[8]  Deirdre M. Kirke Chain reactions in adolescents' cigarette, alcohol and drug use: similarity through peer influence or the patterning of ties in peer networks? , 2004, Soc. Networks.

[9]  D. Lambourn Method of Moments , 2004 .

[10]  R. Leenders Structure and Influence , 2003 .

[11]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[12]  M. Macy Polarization in Dynamic Networks : A Hopfield Model of Emergent Structure , 2003 .

[13]  P. West,et al.  Drifting Smoke Rings: Social Network Analysis and Markov Processes in a Longitudinal Study of Friendship Groups and Risk-taking 1 , 2003 .

[14]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[15]  Noah E. Friedkin,et al.  Norm formation in social influence networks , 2001, Soc. Networks.

[16]  D. Haynie Delinquent Peers Revisited: Does Network Structure Matter?1 , 2001, American Journal of Sociology.

[17]  T. Snijders The statistical evaluation of social network dynamics , 2001 .

[18]  L. Hansen Method of Moments , 2001 .

[19]  Sanjeev Goyal,et al.  A Noncooperative Model of Network Formation , 2000 .

[20]  Michael Michell Smoke Rings: social network analysis of friendship groups, smoking and drug-taking , 2000 .

[21]  Tom A. B. Snijders,et al.  Friendship Networks Through Time: An Actor-Oriented Dynamic Statistical Network Model , 1999, Comput. Math. Organ. Theory.

[22]  G. G. van de Bunt,et al.  Friends by choice , 1999 .

[23]  Gerrit G. van de Bunt,et al.  Friends by choice. An actor-oriented statistical network model for friendship networks through time , 1999 .

[24]  A Orman,et al.  Optimization of Stochastic Models: The Interface Between Simulation and Optimization , 2012, J. Oper. Res. Soc..

[25]  E. Lehmann Elements of large-sample theory , 1998 .

[26]  Noah Mark,et al.  Beyond individual differences : Social differentiation from first principles , 1998 .

[27]  E. Oetting,et al.  Primary socialization theory: the etiology of drug use and deviance. I. , 1998, Substance use & misuse.

[28]  Noah E. Friedkin,et al.  A Structural Theory of Social Influence: List of Tables and Figures , 1998 .

[29]  L. Michell,et al.  Girls, pecking order and smoking. , 1997, Social science & medicine.

[30]  F. Stokman Evolution of social networks , 1997 .

[31]  Marijtje A. J. van Duijn,et al.  Simulation for Statistical Inference in Dynamic Network Models , 1997 .

[32]  T. Snijders Stochastic actor-oriented models for network change , 1996 .

[33]  K. Bauman,et al.  On the importance of peer influence for adolescent drug use: commonly neglected considerations. , 1996, Addiction.

[34]  T. Valente,et al.  Network models of the diffusion of innovations , 1995, Comput. Math. Organ. Theory.

[35]  George Ch. Pflug,et al.  Optimization of Stochastic Models , 1996 .

[36]  Roger Th. A. J. Leenders,et al.  MODELS FOR NETWORK DYNAMICS - A MARKOVIAN FRAMEWORK , 1995 .

[37]  Tom A. B. Snijders,et al.  Methods for longitudinal social network data: Review and Markov process models , 1995 .

[38]  R. Leenders,et al.  Structure and influence : statistical models for the dynamics of actor attributes, network structure, and their interdependence , 1995 .

[39]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[40]  Mustafa Emirbayer,et al.  Network Analysis, Culture, and the Problem of Agency , 1994, American Journal of Sociology.

[41]  K. Bauman,et al.  The contribution of influence and selection to adolescent peer group homogeneity: the case of adolescent cigarette smoking. , 1994, Journal of personality and social psychology.

[42]  John F. Padgett,et al.  Robust Action and the Rise of the Medici, 1400-1434 , 1993, American Journal of Sociology.

[43]  Kathleen M. Carley A Theory of Group Stability , 1991 .

[44]  D. Kahneman,et al.  Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias , 1991 .

[45]  L. A. Fisher,et al.  Influence and Selection In the Friend-adolescent Relationship: Findings from Studies of Adolescent Smoking and Drinking1 , 1988 .

[46]  D. Ruppert,et al.  Efficient Estimations from a Slowly Convergent Robbins-Monro Process , 1988 .

[47]  L. Smith-Lovin,et al.  Homophily in voluntary organizations: Status distance and the composition of face-to-face groups. , 1987 .

[48]  R. Burt Social Contagion and Innovation: Cohesion versus Structural Equivalence , 1987, American Journal of Sociology.

[49]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[50]  S. Wasserman Analyzing Social Networks as Stochastic Processes , 1980 .

[51]  R. Thaler Toward a positive theory of consumer choice , 1980 .

[52]  Denise B. Kandel,et al.  Similarity in Real-Life Adolescent Friendship Pairs. , 1978 .

[53]  Jere M. Cohen Sources of peer group homogeneity. , 1977 .

[54]  Paul W. Holland,et al.  Social Structure as a Network Process / Sozialstruktur als ein Netzwerk-Prozeß , 1977 .

[55]  Samuel Leinhardt,et al.  A dynamic model for social networks , 1977 .

[56]  M. Sahlins Stone Age Economics , 2020 .

[57]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[58]  D. Byrne The Attraction Paradigm , 1971 .

[59]  Neill Megaw,et al.  The American College: A Psychological and Social Interpretation of the Higher Learning , 1962 .

[60]  T. Newcomb Student Peer-Group Influence. , 1962 .

[61]  Nevitt Sanford,et al.  The American college: A psychological and social interpretation of the higher learning. , 1962 .

[62]  Anatol Rapoport,et al.  Spread of information through a population with socio-structural bias: III. Suggested experimental procedures , 1954 .

[63]  Morroe Berger,et al.  Freedom and control in modern society , 1954 .

[64]  A. Rapoport Spread of information through a population with socio-structural bias: II. Various models with partial transitivity , 1953 .

[65]  A. Rapoport Spread of information through a population with socio-structural bias: I. Assumption of transitivity , 1953 .

[66]  John Hall,et al.  Elmtown's youth—the impact of social classes on adolescents , 1951 .