Domain decomposition for variational optical-flow computation

We present an approach to parallel variational optical-flow computation by using an arbitrary partition of the image plane and iteratively solving related local variational problems associated with each subdomain. The approach is particularly suited for implementations on PC clusters because interprocess communication is minimized by restricting the exchange of data to a lower dimensional interface. Our mathematical formulation supports various generalizations to linear/nonlinear convex variational approaches, three-dimensional image sequences, spatiotemporal regularization, and unstructured geometries and triangulations. Results concerning the effects of interface preconditioning, as well as runtime and communication volume measurements on a PC cluster, are presented. Our approach provides a major step toward real-time two-dimensional image processing using off-the-shelf PC hardware and facilitates the efficient application of variational approaches to large-scale image processing problems.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[3]  Sang Uk Lee,et al.  A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint , 1993, Pattern Recognit..

[4]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[5]  Klaus Ressel,et al.  Parallel multigrid: grid partitioning versus domain decomposition , 1991 .

[6]  Christoph Schnörr,et al.  Globally convergent iterative numerical schemes for nonlinear variational image smoothing and segmentation on a multiprocessor machine , 2001, IEEE Trans. Image Process..

[7]  J. Mandel Balancing domain decomposition , 1993 .

[8]  Christoph Schnörr,et al.  Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.

[9]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[11]  R. Glowinski,et al.  Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .

[12]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[13]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[14]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[15]  Joachim Weickert,et al.  Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods , 2005, International Journal of Computer Vision.

[16]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[17]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .

[18]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[19]  Hans-Hellmut Nagel,et al.  Extending the 'Oriented Smoothness Constraint' into the Temporal Domain and the Estimation of Derivatives of Optical Flow , 1990, ECCV.

[20]  P. Tallec,et al.  Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .

[21]  O. Widlund Domain Decomposition Algorithms , 1993 .

[22]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[23]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[24]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[25]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[26]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[27]  Michael Jung,et al.  Parallel Solvers for Nonlinear Elliptic Problems Based on Domain Decomposition Ideas , 1997, Parallel Comput..

[28]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[29]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[30]  Wolfgang Hackbusch,et al.  Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.

[31]  P. Pérez,et al.  Multiscale minimization of global energy functions in some visual recovery problems , 1994 .

[32]  Sugata Ghosal,et al.  A Fast Scalable Algorithm for Discontinuous Optical Flow Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[34]  Timo Kohlberger,et al.  Variational Dense Motion Estimation Using the Helmholtz Decomposition , 2003, Scale-Space.

[35]  Hans Rudolf Schwarz,et al.  Methode der finiten Elemente , 1984 .