Domain decomposition for variational optical-flow computation
暂无分享,去创建一个
Timo Kohlberger | Joachim Weickert | Christoph Schnörr | Andrés Bruhn | J. Weickert | Andrés Bruhn | C. Schnörr | Timo Kohlberger
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Peter Oswald,et al. Multilevel Finite Element Approximation , 1994 .
[3] Sang Uk Lee,et al. A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint , 1993, Pattern Recognit..
[4] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[5] Klaus Ressel,et al. Parallel multigrid: grid partitioning versus domain decomposition , 1991 .
[6] Christoph Schnörr,et al. Globally convergent iterative numerical schemes for nonlinear variational image smoothing and segmentation on a multiprocessor machine , 2001, IEEE Trans. Image Process..
[7] J. Mandel. Balancing domain decomposition , 1993 .
[8] Christoph Schnörr,et al. Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.
[9] Hans-Hellmut Nagel,et al. An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[10] Joachim Weickert,et al. A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.
[11] R. Glowinski,et al. Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .
[12] Wilfried Enkelmann,et al. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..
[13] O. Widlund,et al. Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .
[14] Hans-Hellmut Nagel,et al. On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..
[15] Joachim Weickert,et al. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods , 2005, International Journal of Computer Vision.
[16] Long Chen. INTRODUCTION TO MULTIGRID METHODS , 2005 .
[17] J. Aubin. Approximation of Elliptic Boundary-Value Problems , 1980 .
[18] Curtis R. Vogel,et al. Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..
[19] Hans-Hellmut Nagel,et al. Extending the 'Oriented Smoothness Constraint' into the Temporal Domain and the Estimation of Derivatives of Optical Flow , 1990, ECCV.
[20] P. Tallec,et al. Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .
[21] O. Widlund. Domain Decomposition Algorithms , 1993 .
[22] Timo Kohlberger,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .
[23] Joachim Weickert,et al. Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.
[24] Berthold K. P. Horn,et al. Determining Optical Flow , 1981, Other Conferences.
[25] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[26] T. Chan,et al. Domain decomposition algorithms , 1994, Acta Numerica.
[27] Michael Jung,et al. Parallel Solvers for Nonlinear Elliptic Problems Based on Domain Decomposition Ideas , 1997, Parallel Comput..
[28] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[29] David J. Fleet,et al. Performance of optical flow techniques , 1994, International Journal of Computer Vision.
[30] Wolfgang Hackbusch,et al. Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.
[31] P. Pérez,et al. Multiscale minimization of global energy functions in some visual recovery problems , 1994 .
[32] Sugata Ghosal,et al. A Fast Scalable Algorithm for Discontinuous Optical Flow Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[33] Demetri Terzopoulos,et al. Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..
[34] Timo Kohlberger,et al. Variational Dense Motion Estimation Using the Helmholtz Decomposition , 2003, Scale-Space.
[35] Hans Rudolf Schwarz,et al. Methode der finiten Elemente , 1984 .