Face Space Representations in Deep Convolutional Neural Networks

[1]  Rama Chellappa,et al.  HyperFace: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Swami Sankaranarayanan,et al.  Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms , 2018, Proceedings of the National Academy of Sciences.

[3]  A. Young,et al.  Are We Face Experts? , 2018, Trends in Cognitive Sciences.

[4]  Michael Eickenberg,et al.  Seeing it all: Convolutional network layers map the function of the human visual system , 2017, NeuroImage.

[5]  Carlos D. Castillo,et al.  An All-In-One Convolutional Neural Network for Face Analysis , 2016, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[6]  Martin Wistuba,et al.  Harnessing Model Uncertainty for Detecting Adversarial Examples , 2017 .

[7]  Ha Hong,et al.  Explicit information for category-orthogonal object properties increases along the ventral stream , 2016, Nature Neuroscience.

[8]  Gang Hua,et al.  Labeled Faces in the Wild: A Survey , 2016 .

[9]  Randolph Blake,et al.  The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception , 2015, The Journal of Neuroscience.

[10]  Marcel A J van Gerven,et al.  Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream , 2015, The Journal of Neuroscience.

[11]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[12]  Kendrick N. Kay,et al.  Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex , 2015, Current Biology.

[13]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[14]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[15]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[16]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[17]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[18]  Alice J. O'Toole,et al.  Comparison of human and computer performance across face recognition experiments , 2014, Image and Vision Computing.

[19]  Xiaogang Wang,et al.  Hybrid Deep Learning for Face Verification , 2013, 2013 IEEE International Conference on Computer Vision.

[20]  Alice J. O'Toole,et al.  Comparing face recognition algorithms to humans on challenging tasks , 2012, TAP.

[21]  Frank Tong,et al.  Prevalence of Selectivity for Mirror-Symmetric Views of Faces in the Ventral and Dorsal Visual Pathways , 2012, The Journal of Neuroscience.

[22]  Bruce A. Draper,et al.  The Good, the Bad, and the Ugly Face Challenge Problem , 2012, Image and Vision Computing.

[23]  A. Burton,et al.  Variability in photos of the same face , 2011, Cognition.

[24]  Brittany S. Cassidy,et al.  Lower-Level Stimulus Features Strongly Influence Responses in the Fusiform Face Area , 2010, Cerebral cortex.

[25]  Alice J. O'Toole,et al.  Dissociable Neural Patterns of Facial Identity across Changes in Viewpoint , 2010, Journal of Cognitive Neuroscience.

[26]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 Large-Scale Experimental Results , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Quoc V. Le,et al.  Measuring Invariances in Deep Networks , 2009, NIPS.

[28]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[29]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[30]  Alice J. O'Toole,et al.  Face Recognition Algorithms Surpass Humans Matching Faces Over Changes in Illumination , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  David D. Cox,et al.  Opinion TRENDS in Cognitive Sciences Vol.11 No.8 Untangling invariant object recognition , 2022 .

[32]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[33]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[34]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[35]  H. Wilson,et al.  fMRI evidence for the neural representation of faces , 2005, Nature Neuroscience.

[36]  M. Webster,et al.  Adaptation to natural facial categories , 2002, Nature.

[37]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[38]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[39]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[40]  Otto H. MacLin,et al.  Figural aftereffects in the perception of faces , 1999, Psychonomic bulletin & review.

[41]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[42]  Thomas Vetter,et al.  Three-dimensional shape and two-dimensional surface reflectance contributions to face recognition: an application of three-dimensional morphing , 1999, Vision Research.

[43]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[44]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[45]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  V. Bruce,et al.  Face processing: Human perception and principal components analysis , 1996, Memory & cognition.

[47]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[48]  Alice J. O'Toole,et al.  Low-dimensional representation of faces in higher dimensions of the face space , 1993 .

[49]  T. Valentine The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology a Unified Account of the Effects of Distinctiveness, Inversion, and Race in Face Recognition , 2022 .

[50]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[51]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[52]  Alice J. O'Toole,et al.  A physical system approach to recognition memory for spatially transformed faces , 1988, Neural Networks.

[53]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[54]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[55]  S Hollander,et al.  Recognition memory for typical and unusual faces. , 1979, Journal of experimental psychology. Human learning and memory.

[56]  R. Malpass,et al.  Recognition for faces of own and other race. , 1969, Journal of personality and social psychology.

[57]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[58]  J. Maxwell XVIII.—Experiments on Colour, as perceived by the Eye, with Remarks on Colour-Blindness , 1857, Transactions of the Royal Society of Edinburgh.

[59]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.