Attention-Based Landmark Selection in Autonomous Robotics

This paper describes a robotic architecture that uses visual attention mechanisms for autonomous navigation in unknown indoor environments. A foveation mechanism based on a bottom-up attention system allows the robot to autonomously select landmarks, defined as salient points in the camera images. Landmarks are memorized in a behavioral fashion by coupling sensing and acting to achieve a representation that is view and scale independent. Selected landmarks are stored in a topological map. During the navigation a top-down mechanism controls the attention system to achieve robot localization. Experiments and results show that our system is robust to noise and odometric errors, being at the same time able to deal with a wide range of different environments.

[1]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[2]  Anil K. Jain,et al.  Displacement Measurement and Its Application in Interframe Image Coding , 1981, IEEE Trans. Commun..

[3]  B. Julesz A brief outline of the texton theory of human vision , 1984, Trends in Neurosciences.

[4]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[5]  M. Posner,et al.  Selective attention and cognitive control , 1987, Trends in Neurosciences.

[6]  Peter J. Burt,et al.  Smart sensing within a pyramid vision machine , 1988, Proc. IEEE.

[7]  S. Grossberg,et al.  A neural network architecture for preattentive vision , 1989, IEEE Transactions on Biomedical Engineering.

[8]  D. Sagi,et al.  Vision outside the focus of attention , 1990, Perception & psychophysics.

[9]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[10]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[11]  Edward M. Riseman,et al.  The non-existence of general-case view-invariants , 1992 .

[12]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[13]  Drew McDermott,et al.  Error correction in mobile robot map learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[14]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[15]  Randall D. Beer,et al.  Spatial learning for navigation in dynamic environments , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[17]  Georg von Wichert Mobile robot localization using a self-organized visual environment representation , 1998, Robotics Auton. Syst..

[18]  I. Rybak,et al.  A model of attention-guided visual perception and recognition , 1998, Vision Research.

[19]  Alan C. Schultz,et al.  Integrating Exploration and Localization for Mobile Robots , 1999, Adapt. Behav..

[20]  José del R. Millán,et al.  Efficient learning of variable-resolution cognitive maps for autonomous indoor navigation , 1999, IEEE Trans. Robotics Autom..

[21]  R. Desimone,et al.  The Role of Neural Mechanisms of Attention in Solving the Binding Problem , 1999, Neuron.

[22]  C. Frith,et al.  Shifting baselines in attention research , 2000, Nature Reviews Neuroscience.

[23]  Ulrich Nehmzow,et al.  Robot navigation in the real world: : Experiments with Manchester's FortyTwo in unmodified, large environments , 2000, Robotics Auton. Syst..

[24]  Masayuki Inaba,et al.  View-based approach to robot navigation , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[25]  Stephen R. Marsland,et al.  Learning globally consistent maps by relaxation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[26]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[27]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[28]  Jean-Arcady Meyer,et al.  Map-based navigation in mobile robots: I. A review of localization strategies , 2003, Cognitive Systems Research.

[29]  David Filliat,et al.  Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies , 2003, Cognitive Systems Research.

[30]  Francisco Sandoval Hernández,et al.  Data-and Model-driven Attention Mechanism for Autonomous Visual Landmark Acquisition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[31]  Heinz Hügli,et al.  Robot self-localization using visual attention , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[32]  Tom Duckett,et al.  Experiments in Evidence Based Localisation for a Mobile Robot , 2007 .

[33]  Raymond Klein,et al.  Inhibition of return , 2000, Trends in Cognitive Sciences.

[34]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .