A combinatorial algorithm for computing the rank of a generic partitioned matrix with 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt}

In this paper, we consider the problem of computing the rank of a block-structured symbolic matrix (a generic partitioned matrix) \(A = (A_{\alpha \beta }x_{\alpha \beta })\), where \(A_{\alpha \beta }\) is a \(2 \times 2\) matrix over a field \(\mathbf {F}\) and \(x_{\alpha \beta }\) is an indeterminate for \(\alpha = 1,2,\dots , \mu \) and \(\beta = 1,2, \dots , \nu \). This problem can be viewed as an algebraic generalization of the bipartite matching problem, and was considered by Iwata and Murota (1995). One of recent interests on this problem lies in the connection with non-commutative Edmonds’ problem by Ivanyos, Qiao and Subrahamanyam (2018), and Garg, Gurvits, Oliveiva and Wigderson (2019), where a result by Iwata and Murota implicitly says that the rank and the non-commutative rank (nc-rank) are the same for this class of symbolic matrices.

[1]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[2]  Hiroshi HIRAI,et al.  Computing the Degree of Determinants via Discrete Convex Optimization on Euclidean Buildings , 2018, SIAM J. Appl. Algebra Geom..

[3]  S. Fujishige,et al.  Minimizing Submodular Functions on Diamonds via Generalized Fractional Matroid Matchings , 2014 .

[4]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[5]  Marek Karpinski,et al.  Generalized Wong sequences and their applications to Edmonds' problems , 2013, J. Comput. Syst. Sci..

[6]  Fredrik Kuivinen,et al.  On the complexity of submodular function minimisation on diamonds , 2009, Discret. Optim..

[7]  Hiroshi Hirai,et al.  Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix , 2017, 1705.02060.

[8]  K. Murota,et al.  Block-Triangularizations of Partitioned Matrices under Similarity/Equivalence Transformations , 1994 .

[9]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[10]  Jeffrey Shallit,et al.  The Computational Complexity of Some Problems of Linear Algebra , 1996, J. Comput. Syst. Sci..

[11]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[12]  Satoru Iwata,et al.  A Minimax Theorem and a Dulmage-Mendelsohn Type Decomposition for a Class of Generic Partitioned Matrices , 1995, SIAM J. Matrix Anal. Appl..

[13]  Taihei Oki,et al.  On Solving (Non)commutative Weighted Edmonds' Problem , 2020, ICALP.

[14]  Avi Wigderson,et al.  Operator Scaling: Theory and Applications , 2015, Found. Comput. Math..

[15]  Christophe Reutenauer,et al.  COMMUTATIVE/NONCOMMUTATIVE RANK OF LINEAR MATRICES AND SUBSPACES OF MATRICES OF LOW RANK , 2004 .

[16]  László Lovász,et al.  Singular spaces of matrices and their application in combinatorics , 1989 .

[17]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[18]  Youming Qiao,et al.  Constructive non-commutative rank computation is in deterministic polynomial time , 2015, computational complexity.