Multi-agent interaction and nonlinear Markov games

The general picture of game theoretic modeling dealt with here is characterized by a set of big players, also referred to as principals or major agents, acting on the background of large pools of small players, the impact of the behavior of each small player in a group on the overall evolution decreasing with the increase of the size of the group. In this Part I approach players in groups are not independent rational optimizers. They are either directly controlled by principals and serve the interests of the latter (pressure and collaboration setting) or they resist the actions of the principals (pressure and resistance setting) by evolving their strategies in an 'evolutionary manner' via interactions with other players subject to certain clear rules, deterministic or stochastic. The examples of the real world problems involved include government representatives (often referred to in the literature as benevolent dictators) chasing corrupted bureaucrats, inspectors chasing tax-paying avoidance, police acting against terrorist groups or models describing the attacks of computer or biological viruses. Other class of examples concerns appropriate (or better optimal) management of complex stochastic systems consisting of large number of interacting components (agents, mechanisms, vehicles, subsidiaries, species, police units, robot swarms, etc), which may have competitive or common interests. Such management can also deal with the processes of merging and splitting of functional units (say, firms or banks) or the coalition building of agents. The actions of the big players effectively control the distribution of small players among their possible strategies and can influence the rules of their interaction.

[1]  Michael Maschler,et al.  A price leadership method for solving the inspector's non-constant-sum game , 1966 .

[2]  H. Peyton Young,et al.  Fast convergence in evolutionary equilibrium selection , 2013, Games Econ. Behav..

[3]  Rudolf Avenhaus,et al.  Timely inspection and deterrence , 2001, Eur. J. Oper. Res..

[4]  William H. Sandholm,et al.  Stochastic Approximations with Constant Step Size and Differential Inclusions , 2013, SIAM J. Control. Optim..

[5]  Igor Ushakov Optimal Resource Allocation: With Practical Statistical Applications and Theory , 2013 .

[6]  T. Sandler,et al.  Too Much of a Good Thing? , 2004 .

[7]  Peter E. Caines,et al.  Mean Field Analysis of Controlled Cucker-Smale Type Flocking: Linear Analysis and Perturbation Equations , 2011 .

[8]  Francois Delarue,et al.  The Master Equation for Large Population Equilibriums , 2014, 1404.4694.

[9]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[10]  D. Vere-Jones Markov Chains , 1972, Nature.

[11]  Chen C. Chang Understanding the Game Theory , 2003 .

[12]  A. Clauset,et al.  On the Frequency of Severe Terrorist Events , 2006, physics/0606007.

[13]  Vassili N. Kolokoltsov,et al.  Nonlinear Markov Semigroups and Interacting Lévy Type Processes , 2007 .

[14]  V. Kolokoltsov Markov Processes, Semigroups and Generators , 2011 .

[15]  Leonid Hurwicz,et al.  But Who Will Guard the Guardians , 2007 .

[16]  Glenn Ellison Learning, Local Interaction, and Coordination , 1993 .

[17]  Vassili N. Kolokoltsov,et al.  Mean-Field-Game Model of Corruption , 2015, Dynamic Games and Applications.

[18]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[19]  Marlin U. Thomas,et al.  An infiltration game with time dependent payoff , 1976 .

[20]  W. Zhang In discrete Time , 2017 .

[21]  Ken Binmore,et al.  Muddling Through: Noisy Equilibrium Selection☆ , 1997 .

[22]  贾文浩 Uncle Tom’s Cabin 的两个中译本 , 1991 .

[23]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[24]  J. Shukla,et al.  Modeling the role of government efforts in controlling extremism in a society , 2015 .

[25]  Harvey Diamond,et al.  Minimax Policies for Unobservable Inspections , 1982, Math. Oper. Res..

[26]  V. Belavkin,et al.  On a general kinetic equation for many–particle systems with interaction, fragmentation and coagulation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Steve Alpern,et al.  Patrolling Games , 2011, Oper. Res..

[28]  R. Rob,et al.  Learning, Mutation, and Long Run Equilibria in Games , 1993 .

[29]  A. Zaslavski Turnpike properties in the calculus of variations and optimal control , 2005 .

[30]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[31]  Dario Bauso,et al.  Mean-Field Games and Dynamic Demand Management in Power Grids , 2014, Dyn. Games Appl..

[32]  Fighting corruption: To precommit or not? , 2013 .

[33]  Vassili Kolokoltsov,et al.  Evolutionary, mean-field and pressure-resistance game modelling of networks security , 2018, Journal of Dynamics & Games.

[34]  Todd Sandler,et al.  The calculus of dissent: An analysis of terrorists' choice of targets , 1988, Synthese.

[35]  V. Kolokoltsov The central limit theorem for the Smoluchovski coagulation model , 2007, 0708.0329.

[36]  M. Benaïm,et al.  A class of mean field interaction models for computer and communication systems , 2008, 2008 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops.

[37]  Wei Yang,et al.  Turnpike Theorems for Markov Games , 2012, Dyn. Games Appl..

[38]  Marie-Therese Wolfram,et al.  Socio-economic applications of finite state mean field games , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  J. Liu,et al.  The spread of disease with birth and death on networks , 2004, q-bio/0402042.

[40]  Y. Averboukh A minimax approach to mean field games , 2015 .

[41]  Partial differential equations / Game theory Mean-field games with a major player Jeux à champ moyen avec agent dominant , 2018 .

[42]  Dunia López-Pintado,et al.  Contagion and coordination in random networks , 2006, Int. J. Game Theory.

[43]  Peter E. Caines,et al.  Preface: DGAA Special Issue on Mean Field Games , 2013, Dyn. Games Appl..

[44]  Zhen Li,et al.  Botnet Economics: Uncertainty Matters , 2008, WEIS.

[45]  Yongcan Cao,et al.  Distributed Coordination of Multi-agent Networks , 2011 .

[46]  Alain Bensoussan,et al.  The Master equation in mean field theory , 2014, 1404.4150.

[47]  Steven J. Brams,et al.  Kingmakers and leaders in coalition formation , 2009, Soc. Choice Welf..

[48]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[49]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[50]  Daniele Condorelli,et al.  Market and non-market mechanisms for the optimal allocation of scarce resources , 2013, Games Econ. Behav..

[51]  L. Richardson Variation of the Frequency of Fatal Quarrels with Magnitude , 1948 .

[52]  S. Clearwater Market-based control: a paradigm for distributed resource allocation , 1996 .

[53]  Ivor Spence,et al.  But Who Will Guard the Guardians , 2000 .

[54]  Vladimir V. Mazalov,et al.  Fish wars and cooperation maintenance. , 2010 .

[55]  P. Lions,et al.  Mean-field games with a major player , 2018, Comptes Rendus Mathematique.

[56]  Vassili N. Kolokoltsov,et al.  An approximate Nash equilibrium for pure jump Markov games of mean-field-type on continuous state space , 2016, 1605.05073.

[57]  Peter E. Caines,et al.  Epsilon-Nash Mean Field Game Theory for Nonlinear Stochastic Dynamical Systems with Major and Minor Agents , 2012, SIAM J. Control. Optim..

[58]  Bernhard von Stengel,et al.  Inspection games in arms control , 1996 .

[59]  Luciano Andreozzi Inspection games with long-run inspectors , 2008 .

[60]  Piotr Wiecek Total Reward Semi-Markov Mean-Field Games with Complementarity Properties , 2017, Dyn. Games Appl..

[61]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[62]  Bernhard von Stengel,et al.  Recursive Inspection Games , 2014, Math. Oper. Res..

[63]  J. Norris Cluster Coagulation , 2000 .

[64]  Quanyan Zhu,et al.  Risk-Sensitive Mean-Field Games , 2012, IEEE Transactions on Automatic Control.

[65]  Jeannette M. Wing,et al.  Game strategies in network security , 2005, International Journal of Information Security.

[66]  Vladimir V. Mazalov,et al.  Mathematical Game Theory and Applications , 2014 .

[67]  Steven J. Brams,et al.  National security games , 2004, Synthese.

[68]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[69]  P. Nikolaev Corruption Suppression Models: the Role of Inspectors’ Moral Level , 2014 .

[70]  A. Bensoussan,et al.  Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games , 2015, 1508.05408.

[71]  Diogo A. Gomes,et al.  Continuous time finite state space mean field games — A variational approach , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[72]  Rudolf Avenhaus,et al.  Playing for time: A sequential inspection game , 2005, Eur. J. Oper. Res..

[73]  Hamidou Tembine,et al.  Opinion Dynamics in Social Networks through Mean-Field Games , 2016, SIAM J. Control. Optim..

[74]  Olivier Guéant From infinity to one: The reduction of some mean field games to a global control problem , 2011, 1110.3441.

[75]  D. Marc Kilgour,et al.  Efficient distributions of arms‐control inspection effort , 2004 .

[76]  Marcel Nutz,et al.  A Mean Field Game of Optimal Stopping , 2016, SIAM J. Control. Optim..

[77]  B. Schapiro,et al.  Zipf 's law and the effect of ranking on probability distributions , 1996 .

[78]  A. Garnaev A remark on the customs and smuggler game , 1994 .

[79]  Ryusuke Hohzaki,et al.  An inspection game with multiple inspectees , 2007, Eur. J. Oper. Res..

[80]  Damien Besancenot,et al.  Paradigm Shift: A Mean Field Game Approach , 2015 .

[81]  Bruno Gaujal,et al.  Mean Field for Markov Decision Processes: From Discrete to Continuous Optimization , 2010, IEEE Transactions on Automatic Control.

[82]  L. Bettencourt,et al.  The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models , 2005, physics/0502067.

[83]  H. Peyton Young,et al.  Stochastic Evolutionary Game Dynamics , 1990 .

[84]  V. Kolokoltsov Differential Equations on Measures and Functional Spaces , 2019, Birkhäuser Advanced Texts Basler Lehrbücher.

[85]  R. Rosenthal,et al.  Anonymous sequential games , 1988 .

[86]  G. Stigler,et al.  Law Enforcement, Malfeasance, and Compensation of Enforcers , 1974, The Journal of Legal Studies.

[87]  René Carmona,et al.  Probabilistic Analysis of Mean-field Games , 2013 .

[88]  Ulf Dieckmann,et al.  Games of corruption: how to suppress illegal logging. , 2015, Journal of theoretical biology.

[89]  Rudolf Avenhaus,et al.  Inspection Games , 2009, Encyclopedia of Complexity and Systems Science.

[90]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[91]  R. Carmona,et al.  A probabilistic weak formulation of mean field games and applications , 2013, 1307.1152.

[92]  Oleg A. Malafeyev,et al.  Corruption dynamics model , 2017 .

[93]  D. Gomes,et al.  Discrete Time, Finite State Space Mean Field Games , 2010 .

[94]  Matjaz Perc,et al.  Statistical physics of crime: A review , 2014, Physics of life reviews.

[95]  V. Kolokoltsov Measure-valued limits of interacting particle systems with k-nary interactions , 2003 .

[96]  O. A. Malafeyev,et al.  Electric circuits analogies in economics modeling: Corruption networks , 2014, 2014 2nd 2014 2nd International Conference on Emission Electronics (ICEE).

[97]  Andrei I. Subbotin,et al.  Generalized solutions of first-order PDEs - the dynamical optimization perspective , 1994, Systems and control.

[98]  Mauro Mobilia,et al.  Stochastic population dynamics in spatially extended predator–prey systems , 2017, 1708.07055.

[99]  Nikolay A. Korgin,et al.  An efficient solution of the resource allotment problem with the Groves–Ledyard mechanism under transferable utility , 2016, Autom. Remote. Control..

[100]  Richard T. Boylan Continuous Approximation of Dynamical Systems with Randomly Matched Individuals , 1995 .

[101]  Vassili N. Kolokoltsov,et al.  The fractional Hamilton-Jacobi-Bellman equation , 2017 .

[102]  U. Täuber,et al.  Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka–Volterra Models , 2005, q-bio/0512039.

[103]  Peter Secretan Learning , 1965, Mental Health.

[104]  Yves Achdou,et al.  Mean Field Games: Convergence of a Finite Difference Method , 2012, SIAM J. Numer. Anal..

[105]  Attila Szolnoki,et al.  Statistical Physics of Human Cooperation , 2017, ArXiv.

[106]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[107]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[108]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[109]  Rudolf Avenhaus,et al.  Applications of inspection games , 2004 .

[110]  Michael G. H. Bell,et al.  Network growth models: A behavioural basis for attachment proportional to fitness , 2017, Scientific Reports.

[111]  Marija Cvijovic,et al.  Kinetic models in industrial biotechnology - Improving cell factory performance. , 2014, Metabolic engineering.

[112]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.

[113]  Luca Bortolussi,et al.  Size expansions of mean field approximation: Transient and steady-state analysis , 2019, Perform. Evaluation.

[114]  P. Lions,et al.  The Master Equation and the Convergence Problem in Mean Field Games , 2015, 1509.02505.

[115]  I. Karatzas,et al.  Dynamic Allocation Problems in Continuous Time , 1994 .

[116]  B. Bolker Dynamic models , 2007 .

[117]  Vassili N. Kolokoltsov,et al.  Corruption and botnet defense: a mean field game approach , 2016, Int. J. Game Theory.

[118]  Chronological operator-valued Feynman-Kac formulae for generalized fractional evolutions , 2017, 1705.08157.

[119]  The History of the Life of the Late Mr. Jonathan Wild, the Great, And, Articles in the Champion , 2010 .

[120]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[121]  Jack Carr,et al.  The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions , 1986 .

[122]  Wei Yang,et al.  Evolutionary Inspection and Corruption Games , 2016, Games.

[123]  Francesco Giovannoni,et al.  Corruption and power in democracies , 2014, Soc. Choice Welf..

[124]  Steven Kelman,et al.  Corruption and government: Causes, consequences, and reform , 2000 .

[125]  Didier Sornette,et al.  Theory of Zipf's Law and Beyond , 2009 .

[126]  Valentina Corradi,et al.  Continuous Approximations of Stochastic Evolutionary Game Dynamics , 2000, J. Econ. Theory.

[127]  Todd Sandler,et al.  Counterterrorism , 2005 .

[128]  L. Samuelson,et al.  Musical Chairs: Modeling Noisy Evolution , 1995 .

[129]  Vassili N. Kolokoltsov,et al.  Generalized Continuous-Time Random Walks (CTRW), Subordination by Hitting Times and Fractional Dynamics , 2007, 0706.1928.

[130]  Morris Meisner,et al.  OPTIMAL RESOURCE ALLOCATION , 1972 .

[131]  George Leitmann,et al.  A DYNAMICAL MODEL OF TERRORISM , 2006 .

[132]  Alexander G. Chkhartishvili,et al.  Dynamic models of informational control in social networks , 2010 .

[133]  Melvin Dresher,et al.  A Sampling Inspection Problem in Arms Control Agreements: A Game-Theoretic Analysis , 1962 .

[134]  Benny Van Houdt,et al.  A Refined Mean Field Approximation , 2017, Proc. ACM Meas. Anal. Comput. Syst..

[135]  João Ricardo Faria,et al.  A Vintage Model of Terrorist Organizations , 2012 .

[136]  R. Bellman,et al.  Linear Programming and Economic Analysis. , 1960 .

[137]  Oleg Malafeyev,et al.  Statistical estimation of corruption indicators in the firm , 2016 .

[138]  Hamidou Tembine,et al.  A stochastic maximum principle for risk-sensitive mean-field-type control , 2014, 53rd IEEE Conference on Decision and Control.

[139]  J. M. BalP The Discrete Coagulation-Fragmentation Equations: Existence, Uniqueness, and Density Conservation , 2004 .

[140]  Vassili N. Kolokoltsov,et al.  A fractional Hamilton Jacobi Bellman equation for scaled limits of controlled Continuous Time Random Walks , 2014 .

[141]  Ken Moses,et al.  Law enforcement , 2021, Encyclopedia of Biometrics.

[142]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[143]  Steve Alpern,et al.  Mining Coal or Finding Terrorists: The Expanding Search Paradigm , 2013, Oper. Res..

[144]  George J. Pappas,et al.  Optimal Resource Allocation for Control of Networked Epidemic Models , 2017, IEEE Transactions on Control of Network Systems.

[145]  Bruce J. West Fractional Calculus View of Complexity: Tomorrow’s Science , 2015 .

[146]  Tamer Basar,et al.  Strategic thinking under social influence: Scalability, stability and robustness of allocations , 2016, Eur. J. Control.

[147]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[148]  MengChu Zhou,et al.  Approximately Optimal Computing Budget Allocation for Selection of the Best and Worst Designs , 2017, IEEE Transactions on Automatic Control.

[149]  William H. Sandholm,et al.  Almost global convergence to p-dominant equilibrium , 2001, Int. J. Game Theory.

[150]  V. Kolokoltsov Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles , 2004 .

[151]  V. Kolokoltsov Nonlinear Markov Games on a Finite State Space (Mean-field and Binary Interactions) , 2012 .

[152]  Minyi Huang,et al.  Large-Population LQG Games Involving a Major Player: The Nash Certainty Equivalence Principle , 2009, SIAM J. Control. Optim..

[153]  Pierre-Louis Lions,et al.  Long Time Average of Mean Field Games with a Nonlocal Coupling , 2013, SIAM J. Control. Optim..

[154]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[155]  Gustavo Manso,et al.  National Centre of Competence in Research Financial Valuation and Risk Management Working Paper No . 514 Information Percolation with Equilibrium Search Dynamics , 2009 .

[156]  D. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .

[157]  M. Benaïm A Dynamical System Approach to Stochastic Approximations , 1996 .

[158]  Rudolf Avenhaus,et al.  Inspection Games over Time Fundamental Models and Approaches , 2020 .

[159]  Toke S. Aidt,et al.  Economic Analysis of Corruption: A Survey , 2003 .

[160]  Stefan Wrzaczek,et al.  Differential Terror Queue Games , 2017, Dyn. Games Appl..

[161]  O. Hernández-Lerma,et al.  Discrete-time Markov control processes , 1999 .

[162]  P. Lions,et al.  Mean field games , 2007 .

[163]  Olivier Guéant Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs , 2011, 1110.3442.

[164]  Hamidou Tembine,et al.  A Mean-Field Game of Evacuation in Multilevel Building , 2017, IEEE Transactions on Automatic Control.

[165]  H. Aref,et al.  Bank mergers as scale-free coagulation , 2004 .

[166]  Alain Bensoussan,et al.  Mean-Field-Game Model for Botnet Defense in Cyber-Security , 2015, 1511.06642.

[167]  Vassili Kolokoltsov,et al.  The Evolutionary Game of Pressure (or Interference), Resistance and Collaboration , 2014, Math. Oper. Res..

[168]  T. Besley,et al.  Taxes and Bribery: The Role of Wage Incentives , 1993 .

[169]  R. Radner,et al.  Strategic analysis of petty corruption with an intermediary , 2009 .

[170]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[171]  Dmitry A. Novikov,et al.  Mob Control: Models of Threshold Collective Behavior , 2017 .

[172]  H. Young,et al.  The Evolution of Conventions , 1993 .

[173]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[174]  Wei Yang,et al.  Existence of Solutions to Path-Dependent Kinetic Equations and Related Forward-Backward Systems , 2013, 1303.5467.

[175]  Sean P. Meyn,et al.  Synchronization of Coupled Oscillators is a Game , 2010, IEEE Transactions on Automatic Control.

[176]  Linda Rass,et al.  Spatial deterministic epidemics , 2003 .

[177]  Steffen Dereich,et al.  Random networks with sublinear preferential attachment: The giant component , 2010, 1007.0899.

[178]  Sorin Solomon,et al.  Microscopic study reveals the singular origins of growth , 2008, 0803.2201.

[179]  M. Sakaguchi A SEQUENTIAL ALLOCATION GAME FOR TARGETS WITH VARYING VALUES , 1977 .

[180]  Vassili N. Kolokoltsov,et al.  An epsilon-Nash equilibrium for non-linear Markov games of mean-field-type on finite spaces , 2014 .

[181]  Shmuel Zamir,et al.  Imperfect Inspection Games Over Time , 2002, Ann. Oper. Res..

[182]  Muhammad Shahzad,et al.  The Michaelis-Menten-Stueckelberg Theorem , 2010, Entropy.

[183]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[184]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[185]  V. Kolokoltsov Kinetic equations for the pure jump models of k-nary interacting particle systems , 2006 .

[186]  V. Roychowdhury,et al.  Re-inventing Willis , 2006, physics/0601192.

[187]  Ji-Feng Zhang,et al.  Distributed output feedback control of Markov jump multi-agent systems , 2013, Autom..

[188]  Jerome P. Lynch,et al.  Market‐based control of linear structural systems , 2002 .

[189]  M. Benaïm,et al.  Deterministic Approximation of Stochastic Evolution in Games , 2003 .

[190]  Klara Nahrstedt,et al.  Optimal Resource Allocation , 2006 .

[191]  Alvin M. Saperstein Mathematical modeling of the interaction between terrorism and counter-terrorism and its policy implications , 2008, Complex..

[192]  Carlos Castillo-Chavez,et al.  Models for the transmission dynamics of fanatic behaviors , 2010 .

[193]  Wei Yang,et al.  Inspection and crime prevention: an evolutionary perspective , 2013, ArXiv.

[194]  V. Kolokoltsov Nonlinear Markov Processes and Kinetic Equations , 2010 .

[195]  Uriel G. Rothblum,et al.  Inspection games with local and global allocation bounds , 2013 .

[196]  A. Kochubei,et al.  Fractional kinetic hierarchies and intermittency , 2016, 1604.03807.

[197]  T. Ferguson,et al.  On the Inspection Game , 1998 .

[198]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[199]  Oleg A. Malafeyev,et al.  Programming the robot in tasks of inspection and interception , 2015, 2015 International Conference on Mechanics - Seventh Polyakhov's Reading.

[200]  Vassili N. Kolokoltsov Measure-valued limits of interacting particle systems with k-nary interactions II. Finite-dimensional limits , 2004 .

[201]  François Delarue,et al.  Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games , 2018 .

[202]  Vassili N. Kolokoltsov,et al.  Evolutionary game of coalition building under external pressure , 2016 .

[203]  Y. Achdou,et al.  ON THE SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS ARISING IN MEAN FIELD TYPE CONTROL , 2015, 1503.05044.

[204]  Wei Yang,et al.  On the Rate of Convergence for the Mean-Field Approximation of Controlled Diffusions with Large Number of Players , 2014, Dyn. Games Appl..

[205]  V. Kolokoltsov On Fully Mixed and Multidimensional Extensions of the Caputo and Riemann-Liouville Derivatives, Related Markov Processes and Fractional Differential Equations , 2015, 1501.03925.

[206]  William H. Sandholm Stochastic imitative game dynamics with committed agents , 2012, J. Econ. Theory.

[207]  Diogo A. Gomes,et al.  On the existence of classical solutions for stationary extended mean field games , 2013, 1305.2696.

[208]  T. Sandler,et al.  The Political Economy of Terrorism: The Economic Impact of Transnational Terrorism , 2005 .

[209]  Peter E. Caines,et al.  Preface: DGAA 2nd Special Issue on Mean Field Games , 2014, Dyn. Games Appl..

[210]  Yurii V. Averboukh,et al.  Extremal Shift Rule for Continuous-Time Zero-Sum Markov Games , 2014, Dyn. Games Appl..

[211]  M. V. Safonov,et al.  Lectures on Partial Differential Equations , 2014 .

[212]  Francisco-José Santonja,et al.  A mathematical model of the pressure of an extreme ideology on a society , 2008, Comput. Math. Appl..

[213]  S. Redner,et al.  Organization of growing random networks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[215]  Jean-Yves Le Boudec,et al.  The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points , 2010, Networks Heterog. Media.