暂无分享,去创建一个
Kody J. H. Law | Ajay Jasra | Fangyuan Yu | A. Jasra | K. Law | Fangyuan Yu
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[3] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[4] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[5] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[6] Zoubin Ghahramani,et al. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.
[7] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[8] H. Kushner,et al. Stochastic Approximation and Recursive Algorithms and Applications , 2003 .
[9] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[10] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[11] Neil D. Lawrence,et al. Semi-supervised Learning via Gaussian Processes , 2004, NIPS.
[12] P. Atzberger. The Monte-Carlo Method , 2006 .
[13] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[14] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[15] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[16] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[17] A. P. Dawid,et al. Regression and Classification Using Gaussian Process Priors , 2009 .
[18] J. Pearl. Causal inference in statistics: An overview , 2009 .
[19] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[20] George Casella,et al. A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data , 2008, 0808.2902.
[21] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[22] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[23] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[24] Peter W. Glynn,et al. Exact estimation for Markov chain equilibrium expectations , 2014, Journal of Applied Probability.
[25] Peter W. Glynn,et al. Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..
[26] T. J. Dodwell,et al. A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.
[27] 真人 岡田,et al. AI for Scienceとデータ駆動科学 , 2016 .
[28] Fabio Nobile,et al. Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.
[29] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[30] A. GREGORY,et al. Multilevel Ensemble Transform Particle Filtering , 2015, SIAM J. Sci. Comput..
[31] Ajay Jasra,et al. Forward and Inverse Uncertainty Quantification using Multilevel Monte Carlo Algorithms for an Elliptic Nonlocal Equation , 2016, 1603.06381.
[32] Kody J. H. Law,et al. Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..
[33] Houman Owhadi,et al. Handbook of Uncertainty Quantification , 2017 .
[34] A. Beskos,et al. Multilevel sequential Monte Carlo samplers , 2015, 1503.07259.
[35] Pierre Del Moral,et al. Unbiased multi-index Monte Carlo , 2017, 1702.03057.
[36] Ajay Jasra,et al. A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD , 2017, 1704.00117.
[37] Yan Zhou,et al. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants , 2016, ACM Trans. Model. Comput. Simul..
[38] Yan Zhou,et al. Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..
[39] Kody J. H. Law,et al. MULTI-INDEX SEQUENTIAL MONTE CARLO METHODS FOR PARTIALLY OBSERVED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2018, International Journal for Uncertainty Quantification.
[40] Benjamin Peherstorfer,et al. Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..
[41] Yan Zhou,et al. Bayesian Static Parameter Estimation for Partially Observed Diffusions via Multilevel Monte Carlo , 2017, SIAM J. Sci. Comput..
[42] Habib N. Najm,et al. Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence , 2018 .
[43] Yan Zhou,et al. Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals , 2017, SIAM/ASA J. Uncertain. Quantification.
[44] Ajay Jasra,et al. Markov chain simulation for multilevel Monte Carlo , 2018, Foundations of Data Science.
[45] Matti Vihola,et al. Unbiased Estimators and Multilevel Monte Carlo , 2015, Oper. Res..
[46] The AI revolution in scientific research , 2019 .
[47] Ajay Jasra,et al. Unbiased filtering of a class of partially observed diffusions , 2020, Advances in Applied Probability.
[48] E Weinan,et al. Integrating Machine Learning with Physics-Based Modeling , 2020, ArXiv.
[49] Ajay Jasra,et al. Advanced Multilevel Monte Carlo Methods , 2017, International Statistical Review.
[50] P. Jacob,et al. Unbiased Markov chain Monte Carlo methods with couplings , 2020, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[51] Matti Vihola,et al. Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions , 2018, SIAM/ASA J. Uncertain. Quantification.
[52] Kody J. H. Law,et al. On Unbiased Estimation for Discretized Models , 2021, SIAM/ASA J. Uncertain. Quantification.
[53] Kody J. H. Law,et al. Unbiased estimation of the gradient of the log-likelihood in inverse problems , 2020, Statistics and Computing.