Frequency-domain Approach to Continuous-time System Identification: Some Practical Aspects

Since the end of the 1950s — beginning of the 1960s — the control society developed for its control designs a technique to build discrete-time models of continuous-time processes. Due to its overwhelming success a classical time-domain school emerged, and its authority in the field of system identification was soon widely recognised. The continuous-time identification methods developed in the early days of system identification [30, 67] got into a tight corner, and were ‘forgotten’ for several decades. Nowadays many people select discrete-time models and classical time-domain identification methods to solve their particular modelling problems. If the input is zero-order-hold, then discrete-time models are the natural choice, however, in all other cases continuous-time models might be preferred. Also, if the final goal is physical interpretation, then continuous-time modelling is the prime choice.

[1]  Rik Pintelon,et al.  Identification of continuous-time systems using arbitrary signals , 1997, Autom..

[2]  Yves Rolain,et al.  Identification of linear systems in the presence of nonlinear distortions , 2001, IEEE Trans. Instrum. Meas..

[3]  Minyue Fu,et al.  Modeling continuous-time processes via input-to-state filters , 2006, Autom..

[4]  Yves Rolain,et al.  Study of conditional ML estimators in time and frequency domain system identification , 1997, 1997 European Control Conference (ECC).

[5]  Yves Rolain,et al.  Best conditioned parametric identification of transfer function models in the frequency domain , 1995, IEEE Trans. Autom. Control..

[6]  Rik Pintelon,et al.  Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models , 2007, Autom..

[7]  István Kollár,et al.  Frequency Domain System Identification Toolbox for MATLAB , 1991 .

[8]  B. Moor,et al.  Stepped sine system identification, errors-in-variables and the quotient singular value decomposition , 1990 .

[9]  Yves Rolain,et al.  Experimental characterization of operational amplifiers: a system identification approach-part II: calibration and measurements , 2004, IEEE Transactions on Instrumentation and Measurement.

[10]  Rik Pintelon,et al.  FREQUENCY DOMAIN SYSTEM IDENTIFICATION TOOLBOX FOR MATLAB: CHARACTERIZING NONLINEAR ERRORS OF LINEAR MODELS , 2006 .

[11]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[12]  Yves Rolain,et al.  Box-Jenkins continuous-time modeling , 2000, Autom..

[13]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[14]  J. Schoukens,et al.  Crest-factor minimization using nonlinear Chebyshev approximation methods , 1991 .

[15]  Marion Gilson,et al.  Latest developments for the Matlab CONTSID toolbox , 2006 .

[16]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[17]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[18]  Yves Rolain,et al.  Experimental characterization of operational amplifiers: a system identification Approach-part I: theory and Simulations , 2004, IEEE Transactions on Instrumentation and Measurement.

[19]  L. Ljung,et al.  Frequency Domain Maximum Likelihood Identification , 1997 .

[20]  Lennart Ljung,et al.  Linear approximations of nonlinear FIR systems for separable input processes , 2005, Autom..

[21]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[22]  Rik Pintelon,et al.  Brief paper: Box-Jenkins identification revisited-Part III , 2007 .

[23]  Piet M. T. Broersen,et al.  Automatic Autocorrelation and Spectral Analysis , 2006 .

[24]  J. Schoukens,et al.  Box-Jenkins identification revisited - Part I: Theory , 2006, Autom..

[25]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[26]  Yves Rolain,et al.  Signal reconstruction for nonequidistant finite length sample sets: a "KIS" approach , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).

[27]  Rik Pintelon,et al.  On Parameter Estimation Using Nonparametric Noise Models , 2006, IEEE Transactions on Automatic Control.

[28]  J. Schoukens,et al.  MEASUREMENT AND MODELLING OF LINEAR SYSTEMS IN THE PRESENCE OF NON-LINEAR DISTORTIONS , 2002 .

[29]  Fredrik Gustafsson,et al.  Utilizing periodic excitation in prediction error based system identification , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[30]  S. Wu,et al.  Modeling of Continuous Stochastic Processes from Discrete Observations with Application to Sunspots Data , 1974 .

[31]  Karl Johan Åström,et al.  Zeros of sampled systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[32]  Peter C. Young,et al.  An optimal instrumental variable approach for identifying hybrid continuous-time Box-Jenkins models , 2006 .

[33]  Rik Pintelon,et al.  Parametric identification of two-port models in the frequency domain , 1991 .

[34]  Hugues Garnier,et al.  Identification of continuous-time errors-in-variables models , 2006, Autom..

[35]  Michel Verhaegen,et al.  Continuous-time identification of SISO systems using Laguerre functions , 1999, IEEE Trans. Signal Process..

[36]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[37]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[38]  T. Söderström ERRORS-IN-VARIABLES METHODS IN SYSTEM IDENTIFICATION , 2006 .

[39]  Torsten Söderström,et al.  Identification of continuous-time AR processes from unevenly sampled data , 2002, Autom..

[40]  Yves Rolain,et al.  Numerically robust transfer function modeling from noisy frequency domain data , 2005, IEEE Transactions on Automatic Control.

[41]  Lennart Ljung,et al.  FREQUENCY-DOMAIN IDENTIFICATION OF CONTINUOUS-TIME ARMA MODELS FROM SAMPLED DATA , 2005 .

[42]  Yves Rolain,et al.  Order estimation for linear time-invariant systems using frequency domain identification methods , 1997, IEEE Trans. Autom. Control..

[43]  Rik Pintelon,et al.  Diffusion Systems: Stability, Modeling, and Identification , 2005, IMTC 2005.

[44]  Yves Rolain,et al.  Box-Jenkins identification revisited - Part II: Applications , 2006, Autom..

[45]  Lennart Ljung,et al.  Some results on identifying linear systems using frequency domain data , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[46]  H. Unbehauen,et al.  Identification of continuous-time systems , 1991 .

[47]  Graham C. Goodwin,et al.  Digital control and estimation : a unified approach , 1990 .

[48]  Liuping Wang,et al.  Identification of Continuous-time Models from Sampled Data , 2008 .

[49]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[50]  Bart De Moor,et al.  Continuous-time frequency domain subspace system identification , 1996, Signal Process..

[51]  J. Schoukens,et al.  Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach , 1998, IEEE Trans. Autom. Control..

[52]  J. Schoukens,et al.  Estimation of nonparametric noise models , 2006, 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings.

[53]  Yves Rolain,et al.  Leakage Reduction in Frequency-Response Function Measurements , 2006, IEEE Transactions on Instrumentation and Measurement.

[54]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[55]  Rik Pintelon,et al.  On the frequency scaling in continuous-time modeling , 2005, IEEE Transactions on Instrumentation and Measurement.

[56]  Rik Pintelon,et al.  Continuous-Time Noise Modeling From Sampled Data , 2006, IEEE Transactions on Instrumentation and Measurement.

[57]  T. McKelvey Frequency Domain Identification , 2000 .

[58]  Yves Rolain,et al.  Fully automated spectral analysis of periodic signals , 2003, IEEE Trans. Instrum. Meas..

[59]  Alain Richard,et al.  CONTSID: a Matlab toolbox for direct continuous-time model identification from sampled data , 2006 .

[60]  Piet M. T. Broersen,et al.  Time-series analysis if data are randomly missing , 2006, IEEE Transactions on Instrumentation and Measurement.

[61]  Rolf Johansson,et al.  Identification of continuous-time models , 1994, IEEE Trans. Signal Process..

[62]  Rik Pintelon,et al.  Discrete-time modeling and identification of continuous-time systems: a general framework , 1991 .

[63]  N. Sinha,et al.  Identification of Continuous-Time Systems: Methodology and Computer Implementation , 1991 .

[64]  T. McKelvey Frequency domain identification methods , 2002 .

[65]  Fredrik Gustafsson,et al.  Time-domain identification of dynamic errors-in-variables systems using periodic excitation signals , 1999 .

[66]  R. Pintelon,et al.  On the equivalence of z-domain and s-domain models in system identification , 1996, Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference - 1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec.

[67]  Yves Rolain,et al.  Probability density function for frequency response function measurements using periodic signals , 2003, IEEE Trans. Instrum. Meas..

[68]  Rik Pintelon,et al.  Box-Jenkins identification revisited - Part III: Multivariable systems , 2007, Autom..

[69]  Prasenjit Mohanty,et al.  Operational modal analysis in the presence of harmonic excitation , 2004 .

[70]  Hugues Garnier,et al.  Continuous-time model identification from sampled data: Implementation issues and performance evaluation , 2003 .

[71]  Tomas McKelvey,et al.  Subspace based system identification with periodic excitation signals , 1995 .

[72]  J. Schoukens,et al.  Frequency domain system identification using arbitrary signals , 1997, IEEE Trans. Autom. Control..

[73]  P. Caines Linear Stochastic Systems , 1988 .

[74]  Torsten Söderström,et al.  Using continuous-time modeling for errors-in-variables identification , 2006 .

[75]  H. Garnier,et al.  A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process , 2001 .

[76]  G. Goodwin,et al.  Identifiability of errors in variables dynamic systems , 2006 .

[77]  Michel Verhaegen,et al.  Stochastic theory of continuous-time state-space identification , 1999, IEEE Trans. Signal Process..

[78]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.